Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Composites Science vol. 9, no. 7 (2025), p. 338-353
Autor principal: Apsan Mirela Roxana
Otros Autores: Mitu, Ana Maria, Pop Nicolae, Sireteanu Tudor, Maxim, Vicentiu Marius, Musat, Adrian
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233225581
003 UK-CbPIL
022 |a 2504-477X 
024 7 |a 10.3390/jcs9070338  |2 doi 
035 |a 3233225581 
045 2 |b d20250101  |b d20251231 
100 1 |a Apsan Mirela Roxana 
245 1 |a Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper analyzed the behavior of polymer composite materials reinforced with randomly oriented short natural fibers (hemp, flax, etc.) subjected to external stresses under quasistatic contact conditions with dry Coulomb friction. We presumed the composite body, a 2D flat rectangular plate, being in frictional contact with a rigid foundation for the quasistatic case. The manuscript proposes the finite element method approximation in space and the finite difference approximation in time. The problem of quasistatic frictional contact is described with a special finite element, which can analyze the state of the nodes in the contact area, and their modification, between open, sliding, and fixed contact states, in the analyzed time interval. This finite element also models the Coulomb friction law and controls the penetrability according to a power law. Moreover, the quasi-static case analyzed allows for the description of the load history using an incremental and iterative algorithm. The discrete problem will be a static and nonlinear one for each time increment, and in the case of sliding contact, the stiffness matrix becomes non-symmetric. The regularization of the non-differentiable term comes from the modulus of the normal contact stress, with a convex function and with the gradient in the sub-unit modulus. The non-penetration condition was achieved with the penalty method, and the linearization was conducted with the Newton–Raphson method. 
653 |a Friction 
653 |a Two dimensional bodies 
653 |a Polymers 
653 |a Finite element method 
653 |a Regularization 
653 |a Flax 
653 |a Iterative algorithms 
653 |a Stiffness matrix 
653 |a Coulomb friction 
653 |a Mathematical analysis 
653 |a Mathematical models 
653 |a Rectangular plates 
653 |a Contact stresses 
653 |a Equilibrium 
653 |a Newton-Raphson method 
653 |a Load history 
653 |a Polymer matrix composites 
653 |a Regularization methods 
653 |a Viscoelasticity 
653 |a Sliding contact 
653 |a Composite materials 
653 |a Approximation 
700 1 |a Mitu, Ana Maria 
700 1 |a Pop Nicolae 
700 1 |a Sireteanu Tudor 
700 1 |a Maxim, Vicentiu Marius 
700 1 |a Musat, Adrian 
773 0 |t Journal of Composites Science  |g vol. 9, no. 7 (2025), p. 338-353 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233225581/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233225581/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233225581/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch