Hand Washing Gesture Recognition Using Synthetic Dataset

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Imaging vol. 11, no. 7 (2025), p. 208-227
Autor principal: Rüstem, Özakar
Altres autors: Gedikli Eyüp
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233226470
003 UK-CbPIL
022 |a 2313-433X 
024 7 |a 10.3390/jimaging11070208  |2 doi 
035 |a 3233226470 
045 2 |b d20250101  |b d20251231 
100 1 |a Rüstem, Özakar  |u Deparment of Computer Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25100, Turkey 
245 1 |a Hand Washing Gesture Recognition Using Synthetic Dataset 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Hand hygiene is paramount for public health, especially in critical sectors like healthcare and the food industry. Ensuring compliance with recommended hand washing gestures is vital, necessitating autonomous evaluation systems leveraging machine learning techniques. However, the scarcity of comprehensive datasets poses a significant challenge. This study addresses this issue by presenting an open synthetic hand washing dataset, created using 3D computer-generated imagery, comprising 96,000 frames (equivalent to 64 min of footage), encompassing eight gestures performed by four characters in four diverse environments. This synthetic dataset includes RGB images, depth/isolated depth images and hand mask images. Using this dataset, four neural network models, Inception-V3, Yolo-8n, Yolo-8n segmentation and PointNet, were trained for gesture classification. The models were subsequently evaluated on a large real-world hand washing dataset, demonstrating successful classification accuracies of 56.9% for Inception-V3, 76.3% for Yolo-8n and 79.3% for Yolo-8n segmentation. These findings underscore the effectiveness of synthetic data in training machine learning models for hand washing gesture recognition. 
653 |a Washing 
653 |a Computer-generated imagery 
653 |a Datasets 
653 |a Classification 
653 |a Neural networks 
653 |a Open source software 
653 |a Color imagery 
653 |a Public health 
653 |a Sensors 
653 |a Gesture recognition 
653 |a Machine learning 
653 |a Synthetic data 
700 1 |a Gedikli Eyüp  |u Deparment of Computer Engineering, Faculty of Computer and Information Sciences, Trabzon University, Trabzon 61300, Turkey; eyupgedikli@trabzon.edu.tr 
773 0 |t Journal of Imaging  |g vol. 11, no. 7 (2025), p. 208-227 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233226470/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233226470/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233226470/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch