Efficient Prediction of Shallow-Water Acoustic Transmission Loss Using a Hybrid Variational Autoencoder–Flow Framework

Spremljeno u:
Bibliografski detalji
Izdano u:Journal of Marine Science and Engineering vol. 13, no. 7 (2025), p. 1325-1348
Glavni autor: Bolin, Su
Daljnji autori: Wang, Haozhong, Zhu Xingyu, Song Penghua, Li, Xiaolei
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3233227089
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13071325  |2 doi 
035 |a 3233227089 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Bolin, Su 
245 1 |a Efficient Prediction of Shallow-Water Acoustic Transmission Loss Using a Hybrid Variational Autoencoder–Flow Framework 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Efficient prediction of shallow-water acoustic transmission loss (TL) is crucial for underwater detection, recognition, and communication systems. Traditional physical modeling methods require repeated calculations for each new scenario in practical waveguide environments, leading to low computational efficiency. Deep learning approaches, based on data-driven principles, enable accurate input–output approximation and batch processing of large-scale datasets, significantly reducing computation time and cost. To establish a rapid prediction model mapping sound speed profiles (SSPs) to acoustic TL through controllable generation, this study proposes a hybrid framework that integrates a variational autoencoder (VAE) and a normalizing flow (Flow) through a two-stage training strategy. The VAE network is employed to learn latent representations of TL data on a low-dimensional manifold, while the Flow network is additionally used to establish a bijective mapping between the latent variables and underwater physical parameters, thereby enhancing the controllability of the generation process. Combining the trained normalizing flow with the VAE decoder could establish an end-to-end mapping from SSPs to TL. The results demonstrated that the VAE–Flow network achieved higher computational efficiency, with a computation time of 4 s for generating 1000 acoustic TL samples, versus the over 500 s required by the KRAKEN model, while preserving accuracy, with median structural similarity index measure (SSIM) values over 0.90. 
653 |a Accuracy 
653 |a Shallow water 
653 |a Datasets 
653 |a Flow 
653 |a Transmission loss 
653 |a Mapping 
653 |a Computer applications 
653 |a Batch processing 
653 |a Telecommunications 
653 |a Deep learning 
653 |a Prediction models 
653 |a Propagation 
653 |a Computation 
653 |a Acoustics 
653 |a Sound transmission 
653 |a Neural networks 
653 |a Computational efficiency 
653 |a Sound velocity 
653 |a Variables 
653 |a Communications systems 
653 |a Controllability 
653 |a Physical properties 
653 |a Learning 
653 |a Underwater 
653 |a Computing time 
653 |a Waveguides 
653 |a Environmental 
700 1 |a Wang, Haozhong 
700 1 |a Zhu Xingyu 
700 1 |a Song Penghua 
700 1 |a Li, Xiaolei 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 7 (2025), p. 1325-1348 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233227089/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233227089/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233227089/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch