Predictive ANN Modeling and Optimization of Injection Molding Parameters to Minimize Warpage in Polypropylene Rectangular Parts

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Manufacturing and Materials Processing vol. 9, no. 7 (2025), p. 236-252
Autor principal: Gámez, Juan Luis
Otros Autores: Jordá-Vilaplana Amparo, Peydro Miguel Angel, Selles, Miguel Angel, Sanchez-Caballero, Samuel
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233227516
003 UK-CbPIL
022 |a 2504-4494 
024 7 |a 10.3390/jmmp9070236  |2 doi 
035 |a 3233227516 
045 2 |b d20250101  |b d20251231 
100 1 |a Gámez, Juan Luis  |u Departamento de Ingeniería Gráfica, Universidad de Alicante, 03690 Sant Vicent del Raspeig, Spain; jl.gamez@ua.es 
245 1 |a Predictive ANN Modeling and Optimization of Injection Molding Parameters to Minimize Warpage in Polypropylene Rectangular Parts 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Injection molding is a fundamental process for transforming plastics into various industrial components. Among the critical aspects studied in this process, volumetric contraction and warpage of plastic parts are of particular importance. Achieving precise control over warpage is crucial for ensuring the production of high-quality components. This research explores optimizing injection process parameters to minimize volumetric contraction and warpage in rectangular polypropylene (PP) parts. The study employs experimental analysis, MoldFlow simulation, and Artificial Neural Network (ANN) modeling. MoldFlow simulation software provides valuable data on warpage, serving as input for the ANN model. Based on the Backpropagation Neural Network algorithm, the optimized ANN model accurately predicts warpage by considering factors such as part thickness, flow path distance, and flow path tangent. The study highlights the importance of accurately setting injection parameters to achieve optimal warpage results. The BPNN-based approach offers a faster and more efficient alternative to computer-aided engineering (CAE) processes for studying warpage. 
653 |a Simulation 
653 |a Software 
653 |a Warpage 
653 |a Injection molding 
653 |a Molding parameters 
653 |a Modelling 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Neural networks 
653 |a Back propagation networks 
653 |a Variables 
653 |a Computer aided engineering--CAE 
653 |a Polypropylene 
653 |a Geometry 
653 |a Computer simulation 
653 |a Process parameters 
700 1 |a Jordá-Vilaplana Amparo  |u Departamento de Ingeniería Gráfica, Universitat Politècnica de València, 03801 Alcoy, Spain; amjorvi@upvnet.upv.es 
700 1 |a Peydro Miguel Angel  |u Instituto Universitario de Investigación de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy, Spain; mpeydro@upv.es 
700 1 |a Selles, Miguel Angel  |u Instituto Universitario de Investigación de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy, Spain; mpeydro@upv.es 
700 1 |a Sanchez-Caballero, Samuel  |u Instituto de Diseño para la Fabricación y Producción Automatizada, Universitat Politècnica de València, 03801 Alcoy, Spain; sasanca@dimm.upv.es 
773 0 |t Journal of Manufacturing and Materials Processing  |g vol. 9, no. 7 (2025), p. 236-252 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233227516/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233227516/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233227516/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch