A Novel Transfer Learning-Based OFDM Receiver Design for Enhanced Underwater Acoustic Communication

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Marine Science and Engineering vol. 13, no. 7 (2025), p. 1284-1320
Autor principal: Muhammad, Adil
Altres autors: Liu Songzuo, Suleman, Mazhar, Alharbi Ayman, Honglu, Yan, Muzzammil Muhammad
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233227534
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13071284  |2 doi 
035 |a 3233227534 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Muhammad, Adil  |u National Key Laboratory of Underwater Acoustic Technology, Harbin 150001, China; adil@hrbeu.edu.cn (M.A.); liusongzuo@hrbeu.edu.cn (S.L.); 20155053219@hrbeu.edu.cn (H.Y.); muzzammilm@hrbeu.edu.cn (M.M.) 
245 1 |a A Novel Transfer Learning-Based OFDM Receiver Design for Enhanced Underwater Acoustic Communication 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The underwater acoustic (UWA) communication system faces challenges due to environmental factors, extensive multipath spread, and rapidly changing propagation conditions. Deep learning based solutions, especially for orthogonal frequency division multiplexing (OFDM) receivers, have been shown to improve performance. However, the UWA channel characteristics are highly dynamic and depend on the specific underwater conditions. Therefore, these models suffer from model mismatch when deployed in environments different from those used for training, leading to performance degradation and requiring costly, time-consuming retraining. To address these issues, we propose a transfer learning (TL)-based pre-trained model for OFDM based UWA communication. Rather than training separate models for each underwater channel, we aggregate received signals from five distinct WATERMARK channels, across varying signal to noise ratios (SNRs), into a unified dataset. This diverse training set enables the model to generalize across various underwater conditions, ensuring robust performance without extensive retraining. We evaluate the pre-trained model using real-world data from Qingdao Lake in Hangzhou, China, which serves as the target environment. Our experiments show that the model adapts well to these challenging environment, overcoming model mismatch and minimizing computational costs. The proposed TL-based OFDM receiver outperforms traditional methods in terms of bit error rate (BER) and other evaluation metrics. It demonstrates strong adaptability to varying channel conditions. This includes scenarios where training and testing occur on the same channel, under channel mismatch, and with or without fine-tuning on target data. At 10 dB SNR, it achieves an approximately 80% improvement in BER compared to other methods. 
653 |a Underwater communication 
653 |a Communication 
653 |a Signal processing 
653 |a Bit error rate 
653 |a Machine learning 
653 |a Orthogonal Frequency Division Multiplexing 
653 |a Telecommunications 
653 |a Deep learning 
653 |a Transfer learning 
653 |a Efficiency 
653 |a Propagation 
653 |a Performance enhancement 
653 |a Environmental factors 
653 |a Training 
653 |a Neural networks 
653 |a Communications systems 
653 |a Methods 
653 |a Performance degradation 
653 |a Algorithms 
653 |a Underwater acoustics 
653 |a Underwater 
653 |a Signal to noise ratio 
653 |a Environmental 
700 1 |a Liu Songzuo  |u National Key Laboratory of Underwater Acoustic Technology, Harbin 150001, China; adil@hrbeu.edu.cn (M.A.); liusongzuo@hrbeu.edu.cn (S.L.); 20155053219@hrbeu.edu.cn (H.Y.); muzzammilm@hrbeu.edu.cn (M.M.) 
700 1 |a Suleman, Mazhar  |u National Key Laboratory of Underwater Acoustic Technology, Harbin 150001, China; adil@hrbeu.edu.cn (M.A.); liusongzuo@hrbeu.edu.cn (S.L.); 20155053219@hrbeu.edu.cn (H.Y.); muzzammilm@hrbeu.edu.cn (M.M.) 
700 1 |a Alharbi Ayman  |u Computer and Network Engineering Department, College of Computing, Umm Al-Qura University, Mecca 24231, Saudi Arabia; aarharbi@uqu.edu.sa 
700 1 |a Honglu, Yan  |u National Key Laboratory of Underwater Acoustic Technology, Harbin 150001, China; adil@hrbeu.edu.cn (M.A.); liusongzuo@hrbeu.edu.cn (S.L.); 20155053219@hrbeu.edu.cn (H.Y.); muzzammilm@hrbeu.edu.cn (M.M.) 
700 1 |a Muzzammil Muhammad  |u National Key Laboratory of Underwater Acoustic Technology, Harbin 150001, China; adil@hrbeu.edu.cn (M.A.); liusongzuo@hrbeu.edu.cn (S.L.); 20155053219@hrbeu.edu.cn (H.Y.); muzzammilm@hrbeu.edu.cn (M.M.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 7 (2025), p. 1284-1320 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233227534/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233227534/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233227534/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch