DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Manufacturing and Materials Processing vol. 9, no. 7 (2025), p. 234-255
Autor principal: Guetter, Bohatch Rafael
Outros Autores: de Oliveira Alex Raimundo, Nikhare, Chetan P, Filho Ravilson Antonio Chemin, Prestes Marcondes Paulo Victor
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3233227584
003 UK-CbPIL
022 |a 2504-4494 
024 7 |a 10.3390/jmmp9070234  |2 doi 
035 |a 3233227584 
045 2 |b d20250101  |b d20251231 
100 1 |a Guetter, Bohatch Rafael  |u Mechanical Engineering Department, Federal University of Paraná, Curitiba 81531-990, Brazil; rafael.bohatch@ufpr.br (R.G.B.); alex.raimundo@ufpr.br (A.R.d.O.); ravilson@ufpr.br (R.A.C.F.); marcondes@ufpr.br (P.V.P.M.) 
245 1 |a DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry has developed more efficient metal alloys. To combine vehicle mass reduction with improved performance in deformations in cases of impact, a new family of advanced steels is present, AHSS (Advanced High-Strength Steels). However, this family of steels has lower formability and greater springback compared to conventional steels; if it is not properly controlled, it will directly affect the accuracy of the product and its quality. Different regions of a stamped component, such as the flange, the body wall, and the punch pole, are subjected to different states of stress and deformation, determined by numerous process variables, such as friction/lubrication and tool geometry, in addition to blank holder force and drawbead geometry, which induce the material to different deformation modes. Thus, it is understood that the degree of work hardening in each of these regions can be evaluated by grain morphology and material hardening, defining critical regions of embrittlement that, consequently, will affect the material’s stampability. This work aims to study the formability of the cold-formed DP600 steel sheets in the die radius region using a Modified Nakazima test, varying drawbead geometry, followed by a nanohardness evaluation and material characterization through the electron backscatter diffraction (EBSD). The main objective is to analyze the work hardening in the critical blank regions by applying these techniques. The nanoindentation evaluations were consistent in die radius and demonstrated the hardening influence, proving that the circular drawbead presented the most uniform hardness variation along the profile of the stamped blank and presented lower hardness values in relation to the other geometries, concluding that the drawbead attenuates this variation, contributing to better sheet formability, which corroborates the Forming Limit Curve results. 
653 |a Mechanical properties 
653 |a Process variables 
653 |a Formability 
653 |a Investigations 
653 |a Metal sheets 
653 |a Manufacturing 
653 |a Microstructure 
653 |a High strength steels 
653 |a Nanoindentation 
653 |a Steel 
653 |a Production costs 
653 |a Efficiency 
653 |a Springback 
653 |a Electron backscatter diffraction 
653 |a Dual phase steels 
653 |a Lasers 
653 |a Iron and steel industry 
653 |a Deformation 
653 |a Ductility 
653 |a Cold stamping 
653 |a Microscopy 
653 |a Nanohardness 
653 |a Blankholders 
653 |a Work hardening 
653 |a Forming limit diagrams 
653 |a Automobile industry 
653 |a Dies 
700 1 |a de Oliveira Alex Raimundo  |u Mechanical Engineering Department, Federal University of Paraná, Curitiba 81531-990, Brazil; rafael.bohatch@ufpr.br (R.G.B.); alex.raimundo@ufpr.br (A.R.d.O.); ravilson@ufpr.br (R.A.C.F.); marcondes@ufpr.br (P.V.P.M.) 
700 1 |a Nikhare, Chetan P  |u Mechanical Engineering Department, The Pennsylvania State University, Erie, PA 16563, USA 
700 1 |a Filho Ravilson Antonio Chemin  |u Mechanical Engineering Department, Federal University of Paraná, Curitiba 81531-990, Brazil; rafael.bohatch@ufpr.br (R.G.B.); alex.raimundo@ufpr.br (A.R.d.O.); ravilson@ufpr.br (R.A.C.F.); marcondes@ufpr.br (P.V.P.M.) 
700 1 |a Prestes Marcondes Paulo Victor  |u Mechanical Engineering Department, Federal University of Paraná, Curitiba 81531-990, Brazil; rafael.bohatch@ufpr.br (R.G.B.); alex.raimundo@ufpr.br (A.R.d.O.); ravilson@ufpr.br (R.A.C.F.); marcondes@ufpr.br (P.V.P.M.) 
773 0 |t Journal of Manufacturing and Materials Processing  |g vol. 9, no. 7 (2025), p. 234-255 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233227584/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233227584/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233227584/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch