MARC

LEADER 00000nab a2200000uu 4500
001 3233227828
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13071347  |2 doi 
035 |a 3233227828 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Ghasemi, Ali 
245 1 |a Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. 
653 |a Deep water 
653 |a Offshore 
653 |a Digital cameras 
653 |a Unmanned underwater vehicles 
653 |a Inspection 
653 |a Optimization techniques 
653 |a Echo sounding 
653 |a Image processing 
653 |a Tracking 
653 |a Localization 
653 |a Acoustic data 
653 |a Steel structures 
653 |a Ocean floor 
653 |a Autonomous underwater vehicles 
653 |a Steel 
653 |a Risers 
653 |a Echosounders 
653 |a Structural integrity 
653 |a Clustering 
653 |a Cyclic loads 
653 |a Algorithms 
653 |a Offshore production 
653 |a Accuracy 
653 |a Oscillations 
653 |a Deep learning 
653 |a Ocean bottom 
653 |a Underwater robots 
653 |a Unmanned vehicles 
653 |a Robotics 
653 |a Materials fatigue 
653 |a Cables 
653 |a Deepwater drilling 
653 |a Cluster analysis 
653 |a Numerical models 
653 |a Mathematical models 
653 |a Metal fatigue 
653 |a Sensors 
653 |a Hough transformation 
653 |a Underwater vehicles 
653 |a Underwater pipelines 
653 |a Vertical oscillations 
653 |a Fatigue life 
653 |a Simulators 
653 |a Vector quantization 
653 |a Edge detection 
653 |a Environmental 
700 1 |a Hodjat, Shiri 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 7 (2025), p. 1347-1365 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233227828/abstract/embedded/A8MAESINYUDG6GTR?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233227828/fulltextwithgraphics/embedded/A8MAESINYUDG6GTR?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233227828/fulltextPDF/embedded/A8MAESINYUDG6GTR?source=fedsrch