Relation-Theoretic Boyd–Wong Contractions of Pant Type with an Application to Boundary Value Problems

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 14 (2025), p. 2226-2241
Autor principal: Filali Doaa
Otros Autores: Khan, Faizan Ahmad
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233232352
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13142226  |2 doi 
035 |a 3233232352 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Filali Doaa  |u Department of Mathematical Science, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia 
245 1 |a Relation-Theoretic Boyd–Wong Contractions of Pant Type with an Application to Boundary Value Problems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Non-unique fixed-point theorems play a pivotal role in the mathematical modeling to solve certain typical equations, which admit more than one solution. In such situations, traditional outcomes fail due to uniqueness of fixed points. The primary aim of the present article is to investigate a non-unique fixed-point theorem in the framework of a metric space endowed with a local class of transitive binary relations. To obtain our main objective, we introduce a new nonlinear contraction-inequality that subsumes the ideas involved in four noted contraction conditions, namely: almost contraction, Boyd–Wong contraction, Pant contraction and relational contraction. We also establish the corresponding uniqueness theorem for the proposed contraction under some additional hypotheses. Several examples are furnished to illustrate the legitimacy of our newly proved results. In particular, we deduce a fixed-point theorem for almost Boyd–Wong contractions in the setting of abstract metric space. Our results generalize, enhance, expand, consolidate and develop a number of known results existing in the literature. The practical relevance of the theoretical findings is demonstrated by applying to study the existence and uniqueness of solution of a specific periodic boundary value problem. 
653 |a Metric space 
653 |a Integral equations 
653 |a Uniqueness theorems 
653 |a Boundary value problems 
653 |a Fixed points (mathematics) 
700 1 |a Khan, Faizan Ahmad  |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia 
773 0 |t Mathematics  |g vol. 13, no. 14 (2025), p. 2226-2241 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233232352/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3233232352/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233232352/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch