Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Nanomaterials vol. 15, no. 14 (2025), p. 1136-1217
Tác giả chính: Singh Shivam
Tác giả khác: Stiwinter, Kenneth Christopher, Singh, Jitendra Pratap, Zhao, Yiping
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3233239219
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15141136  |2 doi 
035 |a 3233239219 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Singh Shivam  |u Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India 
245 1 |a Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. 
653 |a Nanoparticles 
653 |a Nitrogen dioxide 
653 |a Gas sensors 
653 |a Structural engineering 
653 |a Volatile organic compounds--VOCs 
653 |a Graphene 
653 |a Pattern recognition 
653 |a Islands 
653 |a Data analysis 
653 |a Nanofabrication 
653 |a Pattern analysis 
653 |a Nanostructure 
653 |a Metals 
653 |a Artificial intelligence 
653 |a Nanorods 
653 |a Real time 
653 |a Metal oxides 
653 |a Deposition 
653 |a Organic compounds 
653 |a Adsorption 
653 |a Aspect ratio 
653 |a Batch processing 
653 |a Hydrogen sulfide 
653 |a Heterojunctions 
653 |a Innovations 
653 |a Charge transfer 
653 |a Catalytic activity 
653 |a Detection limits 
653 |a Porosity 
653 |a Gases 
653 |a Piezoelectricity 
653 |a Fabrication 
653 |a Substrates 
653 |a Temperature 
653 |a Sensors 
653 |a Chemical vapor deposition 
653 |a Noble metals 
653 |a Morphology 
653 |a Reproducibility 
653 |a Signal transduction 
700 1 |a Stiwinter, Kenneth Christopher  |u Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA 
700 1 |a Singh, Jitendra Pratap  |u Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India 
700 1 |a Zhao, Yiping  |u Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA 
773 0 |t Nanomaterials  |g vol. 15, no. 14 (2025), p. 1136-1217 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233239219/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233239219/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233239219/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch