Selection of an Optimal Metabolic Model for Accurately Predicting the Hepatic Clearance of Albumin-Binding-Sensitive Drugs

Guardado en:
Detalles Bibliográficos
Publicado en:Pharmaceuticals vol. 18, no. 7 (2025), p. 991-1007
Autor principal: Ren-Jong, Liang
Otros Autores: Shu-Hao, Hsu, Hsueh-Tien, Chen, Wan-Han, Chen, Han-Yu, Fu, Hsin-Ying, Chen, Wang Hong-Jaan, Sung-Ling, Tang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233239421
003 UK-CbPIL
022 |a 1424-8247 
024 7 |a 10.3390/ph18070991  |2 doi 
035 |a 3233239421 
045 2 |b d20250101  |b d20251231 
084 |a 231548  |2 nlm 
100 1 |a Ren-Jong, Liang  |u Clinical Pharmacy Department, Tri-Service General Hospital Keelung Branch, Keelung City 202006, Taiwan; 810010009@mail.ndmctsgh.edu.tw 
245 1 |a Selection of an Optimal Metabolic Model for Accurately Predicting the Hepatic Clearance of Albumin-Binding-Sensitive Drugs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Background/Objectives: Hepatic clearance is important in determining clinical drug administration strategies. Achieving accurate hepatic clearance predictions through in vitro-to-in vivo extrapolation (IVIVE) relies on appropriate model selection, which is a critical step. Although numerous models have been developed to estimate drug dosage, some may fail to predict liver drug clearance owing to inappropriate hepatic clearance models during IVIVE. To address this limitation, an in silico-based model selection approach for optimizing hepatic clearance predictions was introduced in a previous study. The current study extends this strategy by verifying the accuracy of the selected models using ex situ experimental data, particularly for drugs whose model choices are influenced by protein binding. Methods: Commonly prescribed drugs were classified according to their hepatic extraction ratios and protein-binding properties. Building on previous studies that employed multinomial logistic regression analysis for model selection, a three-phase classification method was implemented to identify five representative drugs: diazepam, diclofenac, rosuvastatin, fluoxetine, and tolbutamide. Subsequently, an isolated perfused rat liver (IPRL) system was used to evaluate the accuracy of the in silico method. Results: As the unbound fraction increased for diazepam and diclofenac, the most suitable predictive model shifted from the initially preferred well-stirred model (WSM) to the modified well-stirred model (MWSM). For rosuvastatin, the MWSM provided a more accurate prediction. These three capacity-limited, binding-sensitive drugs conformed to the outcomes predicted by the multinomial logistic regression analysis. Fluoxetine was best described by the WSM, which is consistent with its flow-limited classification. For tolbutamide, a representative capacity-limited, binding-insensitive drug, no significant differences were observed among the various models. Conclusions: These findings demonstrate the accuracy of an in silico-based model selection approach for predicting liver metabolism and highlight its potential for guiding dosage adjustments. Furthermore, the IPRL system serves as a practical tool for validating the accuracy of the results derived from this approach. 
653 |a Nonsteroidal anti-inflammatory drugs 
653 |a Pharmacokinetics 
653 |a Probability 
653 |a Accuracy 
653 |a Metabolism 
653 |a Regression analysis 
653 |a Liver 
653 |a Experiments 
653 |a Proteins 
700 1 |a Shu-Hao, Hsu  |u School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan; hsu.shuhao@mail.ndmctsgh.edu.tw (S.-H.H.); ccjh097429@gmail.com (H.-T.C.); 
700 1 |a Hsueh-Tien, Chen  |u School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan; hsu.shuhao@mail.ndmctsgh.edu.tw (S.-H.H.); ccjh097429@gmail.com (H.-T.C.); 
700 1 |a Wan-Han, Chen  |u School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan; hsu.shuhao@mail.ndmctsgh.edu.tw (S.-H.H.); ccjh097429@gmail.com (H.-T.C.); 
700 1 |a Han-Yu, Fu  |u School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan; hsu.shuhao@mail.ndmctsgh.edu.tw (S.-H.H.); ccjh097429@gmail.com (H.-T.C.); 
700 1 |a Hsin-Ying, Chen  |u Graduate Institute of Life Science, National Defense Medical Center, Taipei 114201, Taiwan 
700 1 |a Wang Hong-Jaan  |u Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan 
700 1 |a Sung-Ling, Tang  |u Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan 
773 0 |t Pharmaceuticals  |g vol. 18, no. 7 (2025), p. 991-1007 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233239421/abstract/embedded/XH47U3ESDU1O47K5?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233239421/fulltextwithgraphics/embedded/XH47U3ESDU1O47K5?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233239421/fulltextPDF/embedded/XH47U3ESDU1O47K5?source=fedsrch