Short-Term Wind Power Prediction Based on Improved SAO-Optimized LSTM

Guardado en:
Detalles Bibliográficos
Publicado en:Processes vol. 13, no. 7 (2025), p. 2192-2209
Autor principal: Liu Zuoquan
Otros Autores: Liu, Xinyu, Zhang Haocheng
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233242230
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13072192  |2 doi 
035 |a 3233242230 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Liu Zuoquan  |u Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China 
245 1 |a Short-Term Wind Power Prediction Based on Improved SAO-Optimized LSTM 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the optimal parameters for VMD, decomposing the original wind power series into multiple frequency-based subsequences. Subsequently, ISAO is employed to fine-tune the hyperparameters of the LSTM, resulting in an ISAO-LSTM prediction model. The final forecast is obtained by reconstructing the subsequences through superposition. Experiments conducted on real data from a wind farm in Ningxia, China demonstrate that the proposed approach significantly outperforms traditional single and combined models, yielding predictions that closely align with actual measurements. This validates the method’s effectiveness for short-term wind power prediction and offers valuable data support for optimizing microgrid scheduling and capacity planning in wind-integrated energy systems. 
653 |a Accuracy 
653 |a Distributed generation 
653 |a Wind power 
653 |a Lagrange multiplier 
653 |a Fourier transforms 
653 |a Forecasting 
653 |a Prediction models 
653 |a Integrated energy systems 
653 |a Neural networks 
653 |a Ablation 
653 |a Optimization 
653 |a Power series 
653 |a Alternative energy sources 
653 |a Long short-term memory 
653 |a Optimization algorithms 
653 |a Entropy 
653 |a Decomposition 
700 1 |a Liu, Xinyu  |u School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China 
700 1 |a Zhang Haocheng  |u School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China 
773 0 |t Processes  |g vol. 13, no. 7 (2025), p. 2192-2209 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233242230/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233242230/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233242230/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch