Hybrid Cloud-Based Information and Control System Using LSTM-DNN Neural Networks for Optimization of Metallurgical Production

Guardat en:
Dades bibliogràfiques
Publicat a:Processes vol. 13, no. 7 (2025), p. 2237-2257
Autor principal: Kuldashbay, Avazov
Altres autors: Jasur, Sevinov, Barnokhon, Temerbekova, Gulnora, Bekimbetova, Ulugbek, Mamanazarov, Akmalbek, Abdusalomov, Cho Young Im
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233242543
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13072237  |2 doi 
035 |a 3233242543 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Kuldashbay, Avazov  |u Department of Computer Engineering, Gachon University Sujeong-Gu, Seongnam-si 13120, Republic of Korea; kuldoshbay@gachon.ac.kr (K.A.); akmaljon@gachon.ac.kr (A.A.) 
245 1 |a Hybrid Cloud-Based Information and Control System Using LSTM-DNN Neural Networks for Optimization of Metallurgical Production 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the system. This work addresses and solves the problem of selecting and obtaining reliable measurement data by exploiting the redundant measurements of process streams together with the balance equations linking those streams. This study formulates an approach for integrating cloud technologies, machine learning methods, and forecasting into information control systems (ICSs) via predictive analytics to optimize CCP production processes. A method for combining the hybrid cloud infrastructure with an LSTM-DNN neural network model has been developed, yielding a marked improvement in TEP for copper concentration operations. The forecasting accuracy for the key process parameters rose from 75% to 95%. Predictive control reduced energy consumption by 10% through more efficient resource use, while the copper losses to tailings fell by 15–20% thanks to optimized reagent dosing and the stabilization of the flotation process. Equipment failure prediction cut the amount of unplanned downtime by 30%. As a result, the control system became adaptive, automatically correcting the parameters in real time and lessening the reliance on operator decisions. The architectural model of an ICS for metallurgical production based on the hybrid cloud and the LSTM-DNN model was devised to enhance forecasting accuracy and optimize the EPIs of the CCP. The proposed model was experimentally evaluated against alternative neural network architectures (DNN, GRU, Transformer, and Hybrid_NN_TD_AIST). The results demonstrated the superiority of the LSTM-DNN in forecasting accuracy (92.4%), noise robustness (0.89), and a minimal root-mean-square error (RMSE = 0.079). The model shows a strong capability to handle multidimensional, non-stationary time series and to perform adaptive measurement correction in real time. 
653 |a Estimates 
653 |a Information systems 
653 |a Predictive control 
653 |a Control systems 
653 |a Systems stability 
653 |a Flotation 
653 |a Machine learning 
653 |a Efficiency 
653 |a Accuracy 
653 |a Systematic errors 
653 |a Reagents 
653 |a Adaptive systems 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Digital transformation 
653 |a Error correction & detection 
653 |a Copper loss 
653 |a Root-mean-square errors 
653 |a Decision making 
653 |a Optimization 
653 |a Methods 
653 |a Real time 
653 |a Energy consumption 
653 |a Copper 
653 |a Forecasting 
653 |a Process parameters 
653 |a Creeks & streams 
700 1 |a Jasur, Sevinov  |u Department of Information Processing and Management Systems, Tashkent State Technical University, Tashkent 100095, Uzbekistan; j.sevinov@tdtu.uz 
700 1 |a Barnokhon, Temerbekova  |u Department of Information Technologies and Automation of Technological Processes and Production, Almalyk Branch of the National University of Science and Technology MISIS, Almalyk 110100, Uzbekistan; misis_temerbekova@mail.ru (B.T.); m67811@mail.ru (U.M.) 
700 1 |a Gulnora, Bekimbetova  |u Department of Economics and Management, Tashkent State University of Economics, Tashkent 100007, Uzbekistan; gmbbkd@gmail.com 
700 1 |a Ulugbek, Mamanazarov  |u Department of Information Technologies and Automation of Technological Processes and Production, Almalyk Branch of the National University of Science and Technology MISIS, Almalyk 110100, Uzbekistan; misis_temerbekova@mail.ru (B.T.); m67811@mail.ru (U.M.) 
700 1 |a Akmalbek, Abdusalomov  |u Department of Computer Engineering, Gachon University Sujeong-Gu, Seongnam-si 13120, Republic of Korea; kuldoshbay@gachon.ac.kr (K.A.); akmaljon@gachon.ac.kr (A.A.) 
700 1 |a Cho Young Im  |u Department of Computer Engineering, Gachon University Sujeong-Gu, Seongnam-si 13120, Republic of Korea; kuldoshbay@gachon.ac.kr (K.A.); akmaljon@gachon.ac.kr (A.A.) 
773 0 |t Processes  |g vol. 13, no. 7 (2025), p. 2237-2257 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233242543/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233242543/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233242543/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch