Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 14 (2025), p. 2383-2409
Autor principal: Guan Dongjie
Otros Autores: Shi Yitong, Zhou Lilei, Zhu Xusen, Zhao Demei, Guochuan, Peng, He Xiujuan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233249949
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17142383  |2 doi 
035 |a 3233249949 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Guan Dongjie  |u School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China; 990201100029@cqjtu.edu.cn (D.G.); 622230101004@mails.cqjtu.edu.cn (Y.S.); demeiz@cqjtu.edu.cn (D.Z.) 
245 1 |a Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency. 
651 4 |a Nigeria 
651 4 |a China 
653 |a Spatial analysis 
653 |a Algorithms 
653 |a Emissions 
653 |a Correlation analysis 
653 |a Spatial discrimination 
653 |a Statistical methods 
653 |a Carbon 
653 |a Energy consumption 
653 |a Climate change 
653 |a Prediction models 
653 |a Decision trees 
653 |a Heterogeneity 
653 |a Cluster analysis 
653 |a Clustering 
653 |a Spatial resolution 
653 |a Support vector machines 
653 |a Vector quantization 
700 1 |a Shi Yitong  |u School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China; 990201100029@cqjtu.edu.cn (D.G.); 622230101004@mails.cqjtu.edu.cn (Y.S.); demeiz@cqjtu.edu.cn (D.Z.) 
700 1 |a Zhou Lilei  |u School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China; 990201100029@cqjtu.edu.cn (D.G.); 622230101004@mails.cqjtu.edu.cn (Y.S.); demeiz@cqjtu.edu.cn (D.Z.) 
700 1 |a Zhu Xusen  |u Research Center for Ecological Security and Green Development, Chongqing Academy of Social Sciences, Chongqing 400020, China; zhuxusen99@163.com 
700 1 |a Zhao Demei  |u School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China; 990201100029@cqjtu.edu.cn (D.G.); 622230101004@mails.cqjtu.edu.cn (Y.S.); demeiz@cqjtu.edu.cn (D.Z.) 
700 1 |a Guochuan, Peng  |u Institute of Ecology and Environmental Resources, Chongqing Academy of Social Sciences, Chongqing 400020, China; pengpgcm@163.com 
700 1 |a He Xiujuan  |u Department of Geography, The University of Hong Kong, Hong Kong SAR 999077, China; xjhe722@163.com 
773 0 |t Remote Sensing  |g vol. 17, no. 14 (2025), p. 2383-2409 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233249949/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233249949/fulltextwithgraphics/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233249949/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch