Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets

Сохранить в:
Библиографические подробности
Опубликовано в::Remote Sensing vol. 17, no. 14 (2025), p. 2430-2460
Главный автор: Wang, Xin
Другие авторы: Yang, Jing, Luo, Yong
Опубликовано:
MDPI AG
Предметы:
Online-ссылка:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3233250134
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17142430  |2 doi 
035 |a 3233250134 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wang, Xin  |u School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
245 1 |a Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the increasing demands for resolution and robustness, modern ISAR systems are evolving toward wideband and multi-channel architectures. In particular, multi-channel configurations based on large-scale receiving arrays have gained significant attention. In such systems, each receiving element functions as an independent spatial channel, acquiring observations from distinct perspectives. These multi-angle measurements enrich the available echo information and enhance the robustness of target imaging. However, this setup also brings significant challenges, including inter-channel coupling, high-dimensional joint signal modeling, and non-Gaussian, mixed-mode interference, which often degrade image quality and hinder reconstruction performance. To address these issues, this paper proposes a Hybrid Variational Bayesian Multi-Interference (HVB-MI) imaging algorithm based on a hierarchical Bayesian framework. The method jointly models temporal correlations and inter-channel structure, introducing a coupled processing strategy to reduce dimensionality and computational complexity. To handle complex noise environments, a Gaussian mixture model (GMM) is used to represent nonstationary mixed noise. A variational Bayesian inference (VBI) approach is developed for efficient parameter estimation and robust image recovery. Experimental results on both simulated and real-measured data demonstrate that the proposed method achieves significantly improved image resolution and noise robustness compared with existing approaches, particularly under conditions of sparse sampling or strong interference. Quantitative evaluation further shows that under the continuous sparse mode with a 75% sampling rate, the proposed method achieves a significantly higher Laplacian Variance (LV), outperforming PCSBL and CPESBL by 61.7% and 28.9%, respectively and thereby demonstrating its superior ability to preserve fine image details. 
653 |a Sparsity 
653 |a Accuracy 
653 |a Image resolution 
653 |a Receiving 
653 |a Optimization 
653 |a Signal processing 
653 |a Maneuvering targets 
653 |a Remote sensing 
653 |a Data processing 
653 |a Image degradation 
653 |a Parameter robustness 
653 |a Image processing 
653 |a Multichannel communication 
653 |a Joining 
653 |a Sampling 
653 |a Radar imaging 
653 |a Robustness 
653 |a Inverse synthetic aperture radar 
653 |a Probabilistic models 
653 |a Bayesian analysis 
653 |a Image reconstruction 
653 |a Parameter estimation 
653 |a Signal to noise ratio 
653 |a High resolution 
653 |a Convex analysis 
653 |a Methods 
653 |a Algorithms 
653 |a Image quality 
653 |a Complexity 
653 |a Mathematical models 
653 |a Statistical inference 
700 1 |a Yang, Jing  |u School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
700 1 |a Luo, Yong  |u School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
773 0 |t Remote Sensing  |g vol. 17, no. 14 (2025), p. 2430-2460 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233250134/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233250134/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233250134/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch