SMA-YOLO: An Improved YOLOv8 Algorithm Based on Parameter-Free Attention Mechanism and Multi-Scale Feature Fusion for Small Object Detection in UAV Images

Guardat en:
Dades bibliogràfiques
Publicat a:Remote Sensing vol. 17, no. 14 (2025), p. 2421-2446
Autor principal: Qu Shenming
Altres autors: Dang Chaoxu, Chen Wangyou, Liu, Yanhong
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233250437
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17142421  |2 doi 
035 |a 3233250437 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Qu Shenming 
245 1 |a SMA-YOLO: An Improved YOLOv8 Algorithm Based on Parameter-Free Attention Mechanism and Multi-Scale Feature Fusion for Small Object Detection in UAV Images 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With special consideration for complex scenes and densely distributed small objects, this frequently leads to serious false and missed detections for unmanned aerial vehicle (UAV) images in small object detection scenarios. Consequently, we propose a UAV image small object detection algorithm, termed SMA-YOLO. Firstly, a parameter-free simple slicing convolution (SSC) module is integrated in the backbone network to slice the feature maps and enhance the features so as to effectively retain the features of small objects. Subsequently, to enhance the information exchange between upper and lower layers, we design a special multi-cross-scale feature pyramid network (M-FPN). The C2f-Hierarchical-Phantom Convolution (C2f-HPC) module in the network effectively reduces information loss by fine-grained multi-scale feature fusion. Ultimately, adaptive spatial feature fusion detection Head (ASFFDHead) introduces an additional P2 detection head to enhance the resolution of feature maps to better locate small objects. Moreover, the ASFF mechanism is employed to optimize the detection process by filtering out information conflicts during multi-scale feature fusion, thereby significantly optimizing small object detection capability. Using YOLOv8n as the baseline, SMA-YOLO is evaluated on the VisDrone2019 dataset, achieving a 7.4% improvement in mAP@0.5 and a 13.3% reduction in model parameters, and we also verified its generalization ability on VAUDT and RSOD datasets, which demonstrates the effectiveness of our approach. 
653 |a Datasets 
653 |a Accuracy 
653 |a Technological change 
653 |a Algorithms 
653 |a Computer vision 
653 |a Unmanned aerial vehicles 
653 |a Convolution 
653 |a Optimization 
653 |a Feature maps 
653 |a Design 
653 |a Architecture 
653 |a Images 
653 |a Modules 
653 |a Object recognition 
653 |a Localization 
653 |a Parameters 
653 |a Efficiency 
700 1 |a Dang Chaoxu 
700 1 |a Chen Wangyou 
700 1 |a Liu, Yanhong 
773 0 |t Remote Sensing  |g vol. 17, no. 14 (2025), p. 2421-2446 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233250437/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233250437/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233250437/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch