LWSARDet: A Lightweight SAR Small Ship Target Detection Network Based on a Position–Morphology Matching Mechanism

Guardado en:
Bibliografiske detaljer
Udgivet i:Remote Sensing vol. 17, no. 14 (2025), p. 2514-2542
Hovedforfatter: Zhao, Yuliang
Andre forfattere: Du, Yang, Wang Qiutong, Li, Changhe, Miao, Yan, Wang, Tengfei, Song, Xiangyu
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3233250677
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17142514  |2 doi 
035 |a 3233250677 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhao, Yuliang  |u Aulin College, Northeast Forestry University, Harbin 150040, China; zhaoyuliang@nefu.edu.cn (Y.Z.); qiutongwang@nefu.edu.cn (Q.W.); lch@nefu.edu.cn (C.L.) 
245 1 |a LWSARDet: A Lightweight SAR Small Ship Target Detection Network Based on a Position–Morphology Matching Mechanism 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The all-weather imaging capability of synthetic aperture radar (SAR) confers unique advantages for maritime surveillance. However, ship detection under complex sea conditions still faces challenges, such as high-frequency noise interference and the limited computational power of edge computing platforms. To address these challenges, we propose a lightweight SAR small ship detection network, LWSARDet, which mitigates feature redundancy and reduces computational complexity in existing models. Specifically, based on the YOLOv5 framework, a dual strategy for the lightweight network is adopted as follows: On the one hand, to address the limited nonlinear representation ability of the original network, a global channel attention mechanism is embedded and a feature extraction module, GCCR-GhostNet, is constructed, which can effectively enhance the network’s feature extraction capability and high-frequency noise suppression, while reducing computational cost. On the other hand, to reduce feature dilution and computational redundancy in traditional detection heads when focusing on small targets, we replace conventional convolutions with simple linear transformations and design a lightweight detection head, LSD-Head. Furthermore, we propose a Position–Morphology Matching IoU loss function, P-MIoU, which integrates center distance constraints and morphological penalty mechanisms to more precisely capture the spatial and structural differences between predicted and ground truth bounding boxes. Extensive experiments conduct on the High-Resolution SAR Image Dataset (HRSID) and the SAR Ship Detection Dataset (SSDD) demonstrate that LWSARDet achieves superior overall performance compared to existing state-of-the-art (SOTA) methods. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Image resolution 
653 |a Morphology 
653 |a Edge computing 
653 |a Fines & penalties 
653 |a Computer applications 
653 |a Linear transformations 
653 |a Localization 
653 |a Efficiency 
653 |a Redundancy 
653 |a Datasets 
653 |a Remote sensing 
653 |a Matching 
653 |a Noise reduction 
653 |a Synthetic aperture radar 
653 |a Ground truth 
653 |a Dilution 
653 |a Neural networks 
653 |a Target detection 
653 |a Computing costs 
653 |a Design 
653 |a False alarms 
653 |a Algorithms 
653 |a Complexity 
653 |a Semantics 
700 1 |a Du, Yang  |u Computer and Control Engineering College, Northeast Forestry University, Harbin 150040, China; miaoyan@nefu.edu.cn 
700 1 |a Wang Qiutong  |u Aulin College, Northeast Forestry University, Harbin 150040, China; zhaoyuliang@nefu.edu.cn (Y.Z.); qiutongwang@nefu.edu.cn (Q.W.); lch@nefu.edu.cn (C.L.) 
700 1 |a Li, Changhe  |u Aulin College, Northeast Forestry University, Harbin 150040, China; zhaoyuliang@nefu.edu.cn (Y.Z.); qiutongwang@nefu.edu.cn (Q.W.); lch@nefu.edu.cn (C.L.) 
700 1 |a Miao, Yan  |u Computer and Control Engineering College, Northeast Forestry University, Harbin 150040, China; miaoyan@nefu.edu.cn 
700 1 |a Wang, Tengfei  |u China Railway Tunnel Group Co., Ltd., Changchun 130022, China; wangtengff_tt@163.com 
700 1 |a Song, Xiangyu  |u Civil Engineering College, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; songxiangyu@stdu.edu.cn 
773 0 |t Remote Sensing  |g vol. 17, no. 14 (2025), p. 2514-2542 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233250677/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233250677/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233250677/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch