Self-Adapting CPU Scheduling for Mixed Database Workloads via Hierarchical Deep Reinforcement Learning

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Symmetry vol. 17, no. 7 (2025), p. 1109-1141
Κύριος συγγραφέας: Xing Suchuan
Άλλοι συγγραφείς: Wang, Yihan, Liu Wenhe
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3233253157
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17071109  |2 doi 
035 |a 3233253157 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Xing Suchuan  |u Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA; sx80@alumni.duke.edu 
245 1 |a Self-Adapting CPU Scheduling for Mixed Database Workloads via Hierarchical Deep Reinforcement Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Modern database systems require autonomous CPU scheduling frameworks that dynamically optimize resource allocation across heterogeneous workloads while maintaining strict performance guarantees. We present a novel hierarchical deep reinforcement learning framework augmented with graph neural networks to address CPU scheduling challenges in mixed database environments comprising Online Transaction Processing (OLTP), Online Analytical Processing (OLAP), vector processing, and background maintenance workloads. Our approach introduces three key innovations: first, a symmetric two-tier control architecture where a meta-controller allocates CPU budgets across workload categories using policy gradient methods while specialized sub-controllers optimize process-level resource allocation through continuous action spaces; second, graph neural network-based dependency modeling that captures complex inter-process relationships and communication patterns while preserving inherent symmetries in database architectures; and third, meta-learning integration with curiosity-driven exploration enabling rapid adaptation to previously unseen workload patterns without extensive retraining. The framework incorporates a multi-objective reward function balancing Service Level Objective (SLO) adherence, resource efficiency, symmetric fairness metrics, and system stability. Experimental evaluation through high-fidelity digital twin simulation and production deployment demonstrates substantial performance improvements: 43.5% reduction in p99 latency violations for OLTP workloads and 27.6% improvement in overall CPU utilization, with successful scaling to 10,000 concurrent processes maintaining sub-3% scheduling overhead. This work represents a significant advancement toward truly autonomous database resource management, establishing a foundation for next-generation self-optimizing database systems with implications extending to broader orchestration challenges in cloud-native architectures. 
653 |a Data base management systems 
653 |a Deep learning 
653 |a Communication 
653 |a Optimization 
653 |a Resource allocation 
653 |a Decomposition 
653 |a Transaction processing 
653 |a Resource management 
653 |a Workloads 
653 |a Online analytical processing 
653 |a Efficiency 
653 |a Scheduling 
653 |a Online transaction processing 
653 |a Graph neural networks 
653 |a Graph representations 
653 |a Decision making 
653 |a Neural networks 
653 |a Network latency 
653 |a Digital twins 
653 |a Workload 
653 |a Vector processing (computers) 
653 |a Systems stability 
700 1 |a Wang, Yihan  |u School of Engineering and Applied Science, The University of Pennsylvania, Philadelphia, PA 19104, USA 
700 1 |a Liu Wenhe  |u School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; wenhel@cs.cmu.edu 
773 0 |t Symmetry  |g vol. 17, no. 7 (2025), p. 1109-1141 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233253157/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233253157/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233253157/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch