A Study on the Impact of Industrial Robot Applications on Labor Resource Allocation

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Systems vol. 13, no. 7 (2025), p. 569-612
Päätekijä: Wu Kexu
Muut tekijät: Tang, Zhiwei, Zhang Longpeng
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3233253255
003 UK-CbPIL
022 |a 2079-8954 
024 7 |a 10.3390/systems13070569  |2 doi 
035 |a 3233253255 
045 2 |b d20250101  |b d20251231 
084 |a 231636  |2 nlm 
100 1 |a Wu Kexu  |u School of Economics and Management, University of Electronic Science and Technology of China, Chengdu 611731, China; 202111150513@std.uestc.edu.cn 
245 1 |a A Study on the Impact of Industrial Robot Applications on Labor Resource Allocation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid advancement of artificial intelligence and smart manufacturing technologies, the penetration of industrial robots into Chinese markets has profoundly reshaped the structure of the labor market. However, existing studies have largely concentrated on the employment substitution effect and the diffusion path of these technologies, while systematic analyses of how industrial robots affect labor resource allocation efficiency across different regional and industrial contexts in China remain scarce. In particular, research on the mechanisms and heterogeneity of these effects is still underdeveloped, calling for deeper investigation into their transmission channels and policy implications. Drawing on panel data from 280 prefecture-level cities in China from 2006 to 2023, this paper employs a Bartik-style instrumental variable approach to measure the level of industrial robot penetration and constructs a two-way fixed effects model to assess its impact on urban labor misallocation. Furthermore, the analysis introduces two mediating variables, industrial upgrading and urban innovation capacity, and applies a mediation effect model combined with Bootstrap methods to empirically test the underlying transmission mechanisms. The results reveal that a higher level of industrial robot adoption is significantly associated with a lower degree of labor misallocation, indicating a notable improvement in labor resource allocation efficiency. Heterogeneity analysis shows that this effect is more pronounced in cities outside the Yangtze River Economic Belt, in those experiencing severe population aging, and in areas with a relatively weak manufacturing base. Mechanism tests further indicate that industrial robots indirectly promote labor allocation efficiency by facilitating industrial upgrades and enhancing innovation capacity. However, in the short term, improvements in innovation capacity may temporarily intensify labor mismatch due to structural frictions. Overall, industrial robots not only exert a direct positive impact on the efficiency of urban labor allocation but also indirectly contribute to resource optimization through structural transformation and innovation system development. These findings underscore the need to account for regional disparities and demographic structures when advancing intelligent manufacturing strategies. Policymakers should coordinate the development of vocational training systems and innovation ecosystems to strengthen the dynamic alignment between technological adoption and labor market restructuring, thereby fostering more inclusive and high-quality economic growth. 
610 4 |a International Federation of Robotics 
651 4 |a United States--US 
651 4 |a China 
653 |a Regional development 
653 |a Artificial intelligence 
653 |a Labor 
653 |a Efficiency 
653 |a Resource allocation 
653 |a Productivity 
653 |a Cities 
653 |a Statistical methods 
653 |a Automation 
653 |a Manufacturing 
653 |a Economic growth 
653 |a Economic development 
653 |a Intelligent manufacturing systems 
653 |a Innovations 
653 |a Heterogeneity 
653 |a Industrial robots 
700 1 |a Tang, Zhiwei  |u School of Public Administration, University of Electronic Science and Technology of China, Chengdu 611731, China; tangzw@uestc.edu.cn 
700 1 |a Zhang Longpeng  |u School of Public Administration, University of Electronic Science and Technology of China, Chengdu 611731, China; tangzw@uestc.edu.cn 
773 0 |t Systems  |g vol. 13, no. 7 (2025), p. 569-612 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233253255/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233253255/fulltextwithgraphics/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233253255/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch