AnnCoder: A Mti-Agent-Based Code Generation and Optimization Model

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 7 (2025), p. 1087-1112
Autor principal: Zhang, Zhenhua
Otros Autores: Wang, Jianfeng, Li Zhengyang, Wang, Yunpeng, Zheng Jiayun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233253290
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17071087  |2 doi 
035 |a 3233253290 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Zhang, Zhenhua  |u College of Software, Taiyuan University of Technology, Taiyuan 030024, China; zhangzhenhua5824@link.tyut.edu.cn (Z.Z.); wyp_nanxun@163.com (Y.W.) 
245 1 |a AnnCoder: A Mti-Agent-Based Code Generation and Optimization Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The rapid progress of Large Language Models (LLMs) has greatly improved natural language tasks like code generation, boosting developer productivity. However, challenges persist. Generated code often appears “pseudo-correct”—passing functional tests but plagued by inefficiency or redundant structures. Many models rely on outdated methods like greedy selection, which trap them in local optima, limiting their ability to explore better solutions. We propose AnnCoder, a multi-agent framework that mimics the human “try-fix-adapt” cycle through closed-loop optimization. By combining the exploratory power of simulated annealing with the targeted evolution of genetic algorithms, AnnCoder balances wide-ranging searches and local refinements, dramatically increasing the likelihood of finding globally optimal solutions. We speculate that traditional approaches may struggle due to narrow optimization focuses. AnnCoder addresses this by introducing dynamic multi-criteria scoring, weighing functional correctness, efficiency (e.g., runtime/memory), and readability. Its adaptive temperature control dynamically modulates the cooling schedule, slowing cooling when solutions are diverse to encourage exploration, then accelerating convergence as they stabilize. This design elegantly avoids the pitfalls of earlier models by synergistically combining global exploration with local optimization capabilities. After conducting thorough experiments with multiple LLMs analyses across four problem-solving and program synthesis benchmarks—AnnCoder showcased remarkable code generation capabilities—HumanEval 90.85%, MBPP 90.68%, HumanEval-ET 85.37%, and EvalPlus 84.8%. AnnCoder has outstanding advantages in solving general programming problems. Moreover, our method consistently delivers superior performance across various programming languages. 
653 |a Language 
653 |a Collaboration 
653 |a Multiple criterion 
653 |a Debugging 
653 |a Optimization 
653 |a Functional testing 
653 |a Closed loops 
653 |a Temperature control 
653 |a Automation 
653 |a Chatbots 
653 |a Cognition & reasoning 
653 |a Problem solving 
653 |a Optimization models 
653 |a Natural language 
653 |a Cooling 
653 |a Genetic algorithms 
653 |a Large language models 
653 |a Programming languages 
653 |a Redundant components 
653 |a Local optimization 
653 |a Multiagent systems 
653 |a Algorithms 
653 |a Simulated annealing 
653 |a Software engineering 
653 |a Semantics 
700 1 |a Wang, Jianfeng  |u College of Software, Taiyuan University of Technology, Taiyuan 030024, China; zhangzhenhua5824@link.tyut.edu.cn (Z.Z.); wyp_nanxun@163.com (Y.W.) 
700 1 |a Li Zhengyang  |u Department of Computer Science, DigiPen Institute of Technology, Redmond, WA 98052, USA; zhengyang.li@digipen.edu 
700 1 |a Wang, Yunpeng  |u College of Software, Taiyuan University of Technology, Taiyuan 030024, China; zhangzhenhua5824@link.tyut.edu.cn (Z.Z.); wyp_nanxun@163.com (Y.W.) 
700 1 |a Zheng Jiayun  |u College of Engineering, University of Michigan Ann Arbor, Ann Arbor, MI 48104, USA 
773 0 |t Symmetry  |g vol. 17, no. 7 (2025), p. 1087-1112 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233253290/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233253290/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233253290/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch