Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis
Guardado en:
| Publicado en: | Systems vol. 13, no. 7 (2025), p. 595-631 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | At present, the construction industry has not yet fully optimized the integration of the potential of big data. Past studies signaled the potential benefits of integrating building information management (BIM) and big data in the field of sustainable building management (SBM). However, these studies have a monotonous perspective in identifying the development of BIM and big data applications in SBM. Therefore, this paper aims to explore BIM and big data from various perspectives in the field of SBM to identify the aspects where additional efforts are required and provide insights into future directions, and it adopts a mixed method of quantitative and qualitative analysis, including bibliometric analysis and knowledge mapping, providing a macro-overview of the research status and development trends of BIM and big data integration for SBM from multiple bibliometric perspectives. The results indicate the following: (1) the current studies on BIM and big data integration (BBi)-aided SBM mainly focused on data integration and interoperability for collaboration, development of information technologies and emerging technologies, data analysis and presentation, and green building and sustainability assessment; (2) the longitudinal analysis of three time-slice phases (2010–2014, 2015–2018, and 2019–2024) over the past 15 years indicates that the studies on BBi-aided SBM have been expanded from the application of BIM in construction projects to the integration and interoperability of BIM with information technology, the integration of virtual models with physical buildings, and sustainable management throughout the building life cycle stages; and (3) key research gaps and emerging directions include data integration and model interoperability across the building life cycle, model transferability in the application of technology, and a comprehensive sustainability assessment framework based on the whole building life cycle stages. |
|---|---|
| ISSN: | 2079-8954 |
| DOI: | 10.3390/systems13070595 |
| Fuente: | Advanced Technologies & Aerospace Database |