The Sustainable Allocation of Earth-Rock via Division and Cooperation Ant Colony Optimization Combined with the Firefly Algorithm

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Symmetry vol. 17, no. 7 (2025), p. 1029-1052
Kaituhi matua: Li, Linna
Ētahi atu kaituhi: Lu, Junyi, Gao, Han, Li, Dan
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Whakaahuatanga
Whakarāpopotonga:Optimized earth-rock allocation is key in the construction of large-scale navigation channel projects. This paper analyzes the characteristics of a large-scale navigation channel project and establishes an earth-rock allocation system in phases and categories without a transit field. Based on the physical characteristics of the earthwork and stonework used to design a differentiated transport strategy, a synergistic optimization model is built with economic and ecological benefits. As a solution, this paper proposes a sustainable earth-rock allocation optimization method that integrates the improved ant colony algorithm and firefly algorithm, and establishes a two-stage hybrid optimization framework. The application of the Pinglu Canal Project shows that ant colony optimization via division and cooperation combined with the firefly algorithm reduces the transportation cost by 0.128% compared with traditional ant colony optimization; improves the stability by 57.46% (standard deviation) and 59.09% (coefficient of variation) compared with ant colony optimization through division and cooperation; and effectively solves the problems of precocious convergence and local optimization of large-scale earth-rock allocation. It is used to successfully construct an earth-rock allocation model that takes into account the efficiency of the project and the protection of the ecological system in a dynamic environment.
ISSN:2073-8994
DOI:10.3390/sym17071029
Puna:Engineering Database