Dynamic Modeling and Modal Analysis of Rectangular Plates with Edge Symmetric Periodic Acoustic Black Holes

Guardado en:
Bibliografiske detaljer
Udgivet i:Symmetry vol. 17, no. 7 (2025), p. 1031-1052
Hovedforfatter: Shi, Yuanyuan
Andre forfattere: Liu Ziyi, Fan Qiyuan, Wang, Xiao, Huang Qibai, Peng Jiangying
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3233254123
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17071031  |2 doi 
035 |a 3233254123 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Shi, Yuanyuan  |u State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; d201980200@hust.edu.cn (Y.S.); qbhuang@hust.edu.cn (Q.H.) 
245 1 |a Dynamic Modeling and Modal Analysis of Rectangular Plates with Edge Symmetric Periodic Acoustic Black Holes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The vibration noise of plate structures in engineering is strongly related to the modal resonance, and modal design is the key to improve the dynamic characteristics of plate structures and avoid structural resonance. This paper investigates the dynamic and mode characteristics for an edge periodic acoustic black hole plate structure to provide a new approach to vibration and sound attenuation in plate structures. Firstly, based on the principles of symmetry and periodicity, this work presents the geometrical modeling and mathematical description of a rectangular plate with symmetrical periodic acoustic black holes at its edge. Then, it presents the dynamic modeling of a rectangular plate with periodic acoustic black holes at its edge via the “remove-and-fill” substitution method, which reveals the effects of the structural parameters and period distribution, etc., on the modal characteristics of vibration. The study indicates that the power law index, radius, number and configuration (e.g., semicircular, rectangular block shape) of the edge periodic acoustic black holes significantly affect the modal frequency of the rectangular plate, and increasing the radius of the acoustic black holes or the number of the black holes results in a decrease in the modal frequency of the rectangular plate. Moreover, the four-side symmetric layout achieves broader modal frequency modulation, while semicircular acoustic black holes can achieve a lower modal frequency compared with the rectangular wedge-shaped acoustic black hole. The theoretical model is verified by finite element simulation (FEM) and experiments, in which the errors of the first six modal frequencies are within 2%. The research in this paper provides a theoretical basis for the realization of modal frequency control in plate structures and the suppression of structural resonance through the design of edge periodic acoustic black hole structures. 
653 |a Propagation 
653 |a Resonance 
653 |a Rectangular plates 
653 |a Acoustic resonance 
653 |a Optimization 
653 |a Design 
653 |a Energy dissipation 
653 |a Sound attenuation 
653 |a Engineering 
653 |a Modal analysis 
653 |a Vibration 
653 |a Frequency modulation 
653 |a Dynamic characteristics 
653 |a Frequency control 
653 |a Noise control 
653 |a Acoustics 
653 |a Dynamic models 
653 |a Boundary conditions 
653 |a Symmetry 
653 |a Radiation 
653 |a Efficiency 
653 |a Composite materials 
700 1 |a Liu Ziyi  |u Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; 102410144@hbut.edu.cn (Z.L.); 102310147@hbut.edu.cn (Q.F.); 102310162@hbut.edu.cn (X.W.) 
700 1 |a Fan Qiyuan  |u Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; 102410144@hbut.edu.cn (Z.L.); 102310147@hbut.edu.cn (Q.F.); 102310162@hbut.edu.cn (X.W.) 
700 1 |a Wang, Xiao  |u Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; 102410144@hbut.edu.cn (Z.L.); 102310147@hbut.edu.cn (Q.F.); 102310162@hbut.edu.cn (X.W.) 
700 1 |a Huang Qibai  |u State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; d201980200@hust.edu.cn (Y.S.); qbhuang@hust.edu.cn (Q.H.) 
700 1 |a Peng Jiangying  |u State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; d201980200@hust.edu.cn (Y.S.); qbhuang@hust.edu.cn (Q.H.) 
773 0 |t Symmetry  |g vol. 17, no. 7 (2025), p. 1031-1052 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233254123/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233254123/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233254123/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch