Improved Weighted Chimp Optimization Algorithm Based on Fitness–Distance Balance for Multilevel Thresholding Image Segmentation

Guardado en:
Bibliografiske detaljer
Udgivet i:Symmetry vol. 17, no. 7 (2025), p. 1066-1103
Hovedforfatter: Günay, Yılmaz Asuman
Andre forfattere: Samoua, Alsamoua
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3233254141
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17071066  |2 doi 
035 |a 3233254141 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Günay, Yılmaz Asuman  |u Department of Artificial Intelligence and Data Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon 61080, Türkiye 
245 1 |a Improved Weighted Chimp Optimization Algorithm Based on Fitness–Distance Balance for Multilevel Thresholding Image Segmentation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Multilevel thresholding image segmentation plays a crucial role in various image processing applications. However, achieving optimal segmentation results often poses challenges due to the intricate nature of images. In this study, a novel metaheuristic search algorithm named Weighted Chimp Optimization Algorithm with Fitness–Distance Balance (WChOA-FDB) is developed. The algorithm integrates the concept of Fitness–Distance Balance (FDB) to ensure balanced exploration and exploitation of the solution space, thus enhancing convergence speed and solution quality. Moreover, WChOA-FDB incorporates weighted Chimp Optimization Algorithm techniques to further improve its performance in handling multilevel thresholding challenges. Experimental studies were conducted to test and verify the developed method. The algorithm’s performance was evaluated using 10 benchmark functions (IEEE_CEC_2020) of different types and complexity levels. The search performance of the algorithm was analyzed using the Friedman and Wilcoxon statistical test methods. According to the analysis results, the WChOA-FDB variants consistently outperform the base algorithm across all tested dimensions, with Friedman score improvements ranging from 17.3% (Case-6) to 25.2% (Case-4), indicating that the FDB methodology provides significant optimization enhancement regardless of problem complexity. Additionally, experimental evaluations conducted on color image segmentation tasks demonstrate the effectiveness of the proposed algorithm in achieving accurate and efficient segmentation results. The WChOA-FDB method demonstrates significant improvements in Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM) metrics with average enhancements of 0.121348 dB, 0.012688, and 0.003676, respectively, across different threshold levels (m = 2 to 12), objective functions, and termination criteria. 
653 |a Similarity 
653 |a Performance evaluation 
653 |a Image segmentation 
653 |a Computer vision 
653 |a Color imagery 
653 |a Fitness 
653 |a Statistical tests 
653 |a Multilevel 
653 |a Task complexity 
653 |a Optimization 
653 |a Statistical methods 
653 |a Solution space 
653 |a Search algorithms 
653 |a Image processing 
653 |a Optimization algorithms 
653 |a Entropy 
653 |a Heuristic methods 
653 |a Signal to noise ratio 
700 1 |a Samoua, Alsamoua  |u Department of Software Engineering, Faculty of Technology, Karadeniz Technical University, Trabzon 61080, Türkiye; samoua.alsamoua@gmail.com 
773 0 |t Symmetry  |g vol. 17, no. 7 (2025), p. 1066-1103 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233254141/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233254141/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233254141/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch