A Machine Learning-Based Detection for Parameter Tampering Vulnerabilities in Web Applications Using BERT Embeddings

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 7 (2025), p. 985-1000
Autor principal: Yun Sun Young
Otros Autores: Nam-Wook, Cho
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233254152
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17070985  |2 doi 
035 |a 3233254152 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Yun Sun Young  |u Graduate School of Public Policy and IT, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; juna77@seoultech.ac.kr 
245 1 |a A Machine Learning-Based Detection for Parameter Tampering Vulnerabilities in Web Applications Using BERT Embeddings 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The widespread adoption of web applications has led to a significant increase in the number of automated cyberattacks. Parameter tampering attacks pose a substantial security threat, enabling privilege escalation and unauthorized data exfiltration. Traditional pattern-based detection tools exhibit limited efficacy against such threats, as identical parameters may produce varying response patterns contingent on their processing context, including security filtering mechanisms. This study proposes a machine learning-based detection model to address these limitations by identifying parameter tampering vulnerabilities through a contextual analysis. The training dataset aggregates real-world vulnerability cases collected from web crawls, public vulnerability databases, and penetration testing reports. The Synthetic Minority Over-sampling Technique (SMOTE) was employed to address the data imbalance during training. Recall was adopted as the primary evaluation metric to prioritize the detection of true vulnerabilities. Comparative analysis showed that the XGBoost model demonstrated superior performance and was selected as the detection model. Validation was performed using web URLs with known parameter tampering vulnerabilities, achieving a detection rate of 73.3%, outperforming existing open-source automated tools. The proposed model enhances vulnerability detection by incorporating semantic representations of parameters and their values using BERT embeddings, enabling the system to learn contextual characteristics beyond the capabilities of pattern-based methods. These findings suggest the potential of the proposed method for scalable, efficient, and automated security diagnostics in large-scale web environments. 
653 |a Forgery 
653 |a Machine learning 
653 |a Parameter identification 
653 |a Accuracy 
653 |a Datasets 
653 |a Security 
653 |a Artificial intelligence 
653 |a Applications programs 
653 |a Exploitation 
653 |a Open source software 
653 |a Fraud prevention 
653 |a Cybersecurity 
653 |a Automation 
653 |a Access control 
700 1 |a Nam-Wook, Cho  |u Department of Industrial and Information Systems Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea 
773 0 |t Symmetry  |g vol. 17, no. 7 (2025), p. 985-1000 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233254152/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233254152/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233254152/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch