Uncovering Patterns of Violence in Mexican Digital News Articles Through Data Science Methods

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:International Journal of Combinatorial Optimization Problems and Informatics vol. 16, no. 3 (2025), p. 195-216
Egile nagusia: Zárate-Cartas, Jonathan
Beste egile batzuk: Molina-Villegas, Alejandro
Argitaratua:
International Journal of Combinatorial Optimization Problems & Informatics
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3233470458
003 UK-CbPIL
022 |a 2007-1558 
024 7 |a 10.61467/2007.1558.2025.v16i3.602  |2 doi 
035 |a 3233470458 
045 2 |b d20250701  |b d20250930 
084 |a 155128  |2 nlm 
100 1 |a Zárate-Cartas, Jonathan 
245 1 |a Uncovering Patterns of Violence in Mexican Digital News Articles Through Data Science Methods 
260 |b International Journal of Combinatorial Optimization Problems & Informatics  |c 2025 
513 |a Journal Article 
520 3 |a Violence against women is one of the most common human rights violations, with its most extreme form being femicide. In this context, we considered it relevant to demonstrate how artificial intelligence tools and geospatial analysis techniques can contribute to a better and faster analysis of these crimes. In this study, we analysed femicides that occurred in Mexico between 2014 and 2022. Our data source comprised digital news articles from leading Mexican newspapers. The study begins with the preprocessing of texts and the detection of those mentioning femicide. Subsequently, using unsupervised learning models, we grouped the texts according to their semantic similarity. We then employed deep learning models to classify each crime according to its specific characteristics. Finally, we used spatial analysis tools to detect geographic patterns in the occurrence of these crimes in the metropolitan area of the Valley of Mexico, analysing the automatically detected characteristics as variables. 
653 |a Violence 
653 |a Metropolitan areas 
653 |a Spatial analysis 
653 |a Deep learning 
653 |a Artificial intelligence 
653 |a Texts 
653 |a Data science 
653 |a Unsupervised learning 
653 |a Tools 
653 |a Gender-based violence 
653 |a Crime 
653 |a Domestic violence 
653 |a Newspapers 
653 |a Optimization 
653 |a Neural networks 
653 |a Femicide 
653 |a Natural language processing 
653 |a Women 
653 |a Informatics 
653 |a Automatic text analysis 
653 |a Murders & murder attempts 
653 |a Human rights 
700 1 |a Molina-Villegas, Alejandro 
773 0 |t International Journal of Combinatorial Optimization Problems and Informatics  |g vol. 16, no. 3 (2025), p. 195-216 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233470458/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233470458/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch