Supply Chain Resilience in California: Targeted-Efficient Spillover Methodology

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Combinatorial Optimization Problems and Informatics vol. 16, no. 3 (2025), p. 92-106
Hovedforfatter: Moreno-Baca, Fabricio
Andre forfattere: Cano-Olivos, Patricia, Martínez-Flores, José Luis, Sánchez-Partida, Diana
Udgivet:
International Journal of Combinatorial Optimization Problems & Informatics
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3233470578
003 UK-CbPIL
022 |a 2007-1558 
024 7 |a 10.61467/2007.1558.2025.v16i2.327  |2 doi 
035 |a 3233470578 
045 2 |b d20250701  |b d20250930 
084 |a 155128  |2 nlm 
100 1 |a Moreno-Baca, Fabricio 
245 1 |a Supply Chain Resilience in California: Targeted-Efficient Spillover Methodology 
260 |b International Journal of Combinatorial Optimization Problems & Informatics  |c 2025 
513 |a Journal Article 
520 3 |a The world has changed drastically in logistical and economic spheres as a result of the COVID-19 pandemic. This pandemic has caused a global crisis in supply-chain structures, creating regional, national and international impacts of unprecedented magnitude. Accordingly, this research develops a methodology to favour the logistics-resilience framework based on regional externalities and technical-efficiency analysis of the 51 US states, applying a Spatial Data Panel model and a Stochastic Frontier model in conjunction with graph theory (Ford–Fulkerson algorithm). The findings indicate that New York, West Virginia and North Dakota are vital external regions to support California’s logistics resilience. We demonstrate that a region with high technical efficiency does not necessarily constitute a key logistics spillover for a target region. This study represents one of the first attempts to optimise and redirect externalities from one region to another using spatial and logistical mechanisms. 
653 |a Regional development 
653 |a Stochastic models 
653 |a Spatial data 
653 |a Logistics 
653 |a Resilience 
653 |a Graph theory 
653 |a Supply chains 
653 |a Externality 
653 |a Infrastructure 
653 |a Cooperation 
653 |a Communication 
653 |a Optimization 
653 |a Pandemics 
653 |a Regions 
653 |a Taxonomy 
653 |a Algorithms 
653 |a Medical supplies 
653 |a Informatics 
653 |a Suppliers 
653 |a Efficiency 
653 |a Public policy 
653 |a COVID-19 
700 1 |a Cano-Olivos, Patricia 
700 1 |a Martínez-Flores, José Luis 
700 1 |a Sánchez-Partida, Diana 
773 0 |t International Journal of Combinatorial Optimization Problems and Informatics  |g vol. 16, no. 3 (2025), p. 92-106 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233470578/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233470578/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch