Beyond the outbreak: a review of big data analytics in proactive infectious disease prevention for risk mitigation for COVID-19

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Journal of Big Data vol. 12, no. 1 (Jul 2025), p. 185
المؤلف الرئيسي: Nuha, Nurun
مؤلفون آخرون: Ali Pitchay, Sakinah, Ab Halim, Azni Haslizan, Sahbudin, Murtadha Arif Bin, Sahbudin, Ilfita
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3233582257
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01245-z  |2 doi 
035 |a 3233582257 
045 2 |b d20250701  |b d20250731 
100 1 |a Nuha, Nurun  |u Universiti Sains Islam Malaysia, Faculty of Science and Technology, Bandar Baru Nilai, Malaysia (GRID:grid.462995.5) (ISNI:0000 0001 2218 9236) 
245 1 |a Beyond the outbreak: a review of big data analytics in proactive infectious disease prevention for risk mitigation for COVID-19 
260 |b Springer Nature B.V.  |c Jul 2025 
513 |a Journal Article 
520 3 |a The World Health Organisation (WHO) has identified infectious diseases, particularly COVID-19, tuberculosis, malaria, and measles, as significant global health challenges in the past 5 years. The COVID-19 pandemic exposed critical limitations in traditional disease tracking systems, such as the lack of integrated data visualization, co-monitoring, and real-time analytics, leading to delayed and often ineffective public health responses. In this context, Big Data Analytics (BDA) offers significant potential for improving infectious disease mitigation through predictive modelling, mapping, tracking, and real-time monitoring. This study systematically reviews the role of BDA in monitoring and predicting epidemic and pandemic infections using the PRISMA methodology and quality appraisal techniques to provide comprehensive insights into its healthcare applications. From an initial pool of 846 articles from Scopus, PubMed, Science Direct, IEEE, ProQuest, and Springer, 30 high-quality studies were selected for in-depth analysis. The review identifies four key predictive models—epidemiological, time series, machine learning, and deep learning—and seven analytical techniques, including SIR, SEIR, regression analysis, random forest, support vector machines, auto-regressive methods, and deep learning. BDA supports infectious disease control by processing diverse healthcare data and leveraging technologies like IoT and social media to enhance diagnosis, clinical decision-making, and surveillance. However, a key limitation is predictive models’ limited reliability and generalizability in real-world settings, mainly due to low-quality, noisy, and incomplete data. For instance, during early COVID-19 phases, inconsistent case reporting hindered accurate forecasting and timely response efforts. 
653 |a Infectious diseases 
653 |a Data analysis 
653 |a Health surveillance 
653 |a Malaria 
653 |a Scientific visualization 
653 |a Big Data 
653 |a Support vector machines 
653 |a Health care 
653 |a Prediction models 
653 |a Public health 
653 |a Disease control 
653 |a Telemedicine 
653 |a Tracking systems 
653 |a Laboratories 
653 |a Regression analysis 
653 |a Literature reviews 
653 |a Deep learning 
653 |a Machine learning 
653 |a Real time 
653 |a Decision trees 
653 |a Tuberculosis 
653 |a Reliability 
653 |a Surveillance 
653 |a Medical diagnosis 
653 |a Disease 
653 |a Mapping 
653 |a Data quality 
653 |a Delayed 
653 |a Social media 
653 |a Predictions 
653 |a Pandemics 
653 |a COVID-19 
653 |a Generalizability 
653 |a Tracking 
653 |a Responses 
653 |a Disease prevention 
653 |a Data processing 
653 |a Visualization 
653 |a Health services 
653 |a Time series 
653 |a Epidemiology 
653 |a Measles 
653 |a Decision making 
653 |a Mitigation 
653 |a Medical decision making 
653 |a Clinical decision making 
653 |a Forecasting 
653 |a Epidemics 
653 |a Machinery 
700 1 |a Ali Pitchay, Sakinah  |u Universiti Sains Islam Malaysia, Faculty of Science and Technology, Bandar Baru Nilai, Malaysia (GRID:grid.462995.5) (ISNI:0000 0001 2218 9236); CyberSecurity and Systems (CSS) Research Unit, Faculty of Science and Technology, Bandar Baru Nilai, Malaysia (GRID:grid.462995.5) 
700 1 |a Ab Halim, Azni Haslizan  |u Universiti Sains Islam Malaysia, Faculty of Science and Technology, Bandar Baru Nilai, Malaysia (GRID:grid.462995.5) (ISNI:0000 0001 2218 9236); CyberSecurity and Systems (CSS) Research Unit, Faculty of Science and Technology, Bandar Baru Nilai, Malaysia (GRID:grid.462995.5) 
700 1 |a Sahbudin, Murtadha Arif Bin  |u Universiti Brunei Darussalam, Institute of Applied Data Analytics, Gadong, Brunei (GRID:grid.440600.6) (ISNI:0000 0001 2170 1621); Universiti Brunei Darussalam, School of Digital Science, Gadong, Brunei (GRID:grid.440600.6) (ISNI:0000 0001 2170 1621) 
700 1 |a Sahbudin, Ilfita  |u University of Birmingham, Rheumatology Research Group, Institute of Inflammation and Ageing, Birmingham, UK (GRID:grid.6572.6) (ISNI:0000 0004 1936 7486) 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Jul 2025), p. 185 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233582257/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3233582257/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233582257/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch