A steady state micro genetic algorithm for hyper-heuristic generation in one-dimensional bin packing

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 27220
Үндсэн зохиолч: Juárez, Julio
Бусад зохиолчид: Falcón-Cardona, Jesús Guillermo, Ortiz-Bayliss, José Carlos
Хэвлэсэн:
Nature Publishing Group
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3233585955
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-10790-9  |2 doi 
035 |a 3233585955 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Juárez, Julio  |u Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico (GRID:grid.419886.a) (ISNI:0000 0001 2203 4701) 
245 1 |a A steady state micro genetic algorithm for hyper-heuristic generation in one-dimensional bin packing 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The one-dimensional bin packing problem&#xa0;(1DBPP) is a well-known NP-hard problem in computer science and operations research that involves many real-world applications. Its primary objective is to allocate items into bins while minimizing the number of bins used. Due to the complexity of the problem, exact algorithms are often impractical for large instances, which has led to a reliance on tailored heuristics that may perform well on some instances but poorly on others. In this study, we propose a method to automatically generate selection hyper-heuristics&#xa0;(HHs), which are then applied to solve 1DBPP instances by leveraging the strengths of simple heuristics while avoiding their drawbacks. Specifically, we introduce a steady-state <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" /> Genetic Algorithm (SS<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" />GA) to generate selection HHs, benefiting from the gradual population updates of steady-state GAs and the efficiency of <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" />GAs with smaller populations for faster iterations. Our experimental results showcase the effectiveness of the SS<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" />GA across multiple training and testing datasets for the 1DBPP. Compared to other evolutionary methodologies, also used as generative HH methods (i.e., generational GA, steady-state GA, and generational <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" />GA), the SS<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" />GA consistently achieves higher fitness values within the same number of evaluations, on the training set. Additionally, on both generated and literature 1DBPP instances for the testing set, the selection HHs generated by the SS<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" />GA were highly competitive, often outperforming those produced by other methods. Furthermore, the SS<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="41598_2025_10790_Article_IEq1.gif" />GA-generated HHs displayed both specialization for specific instance types and generalization across varied instances. 
653 |a Problem solving 
653 |a Algorithms 
653 |a Packing problem 
653 |a Heuristic 
653 |a Operations research 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Economic 
700 1 |a Falcón-Cardona, Jesús Guillermo  |u Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico (GRID:grid.419886.a) (ISNI:0000 0001 2203 4701) 
700 1 |a Ortiz-Bayliss, José Carlos  |u Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico (GRID:grid.419886.a) (ISNI:0000 0001 2203 4701) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 27220 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233585955/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3233585955/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233585955/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch