Techno-Economic Design of a Hybrid Photovoltaic–Wind System for a Residential Microgrid Considering Uncertainties Using Dynamic Parameters Bald Eagle Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Energy Research vol. 2025 (2025)
Autor principal: Mehrdad Ahmadi Kamarposhti
Otros Autores: Shokouhandeh, Hassan, Outbib, Rachid, Colak, Ilhami, El Manaa Barhoumi
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233812252
003 UK-CbPIL
022 |a 0363-907X 
022 |a 1099-114X 
024 7 |a 10.1155/er/5413946  |2 doi 
035 |a 3233812252 
045 2 |b d20250101  |b d20251231 
084 |a 163842  |2 nlm 
100 1 |a Mehrdad Ahmadi Kamarposhti  |u Department of Electrical Engineering Jo.C. Islamic Azad University Jouybar Iran 
245 1 |a Techno-Economic Design of a Hybrid Photovoltaic–Wind System for a Residential Microgrid Considering Uncertainties Using Dynamic Parameters Bald Eagle Algorithm 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a probabilistic cost-based model for grid-connected photovoltaic (PV)–wind hybrid system design, employing probability density functions (PDFs) and Monte Carlo simulation (MCS) to address renewable generation and load demand uncertainties. The proposed scenario-based approach features an innovative objective function incorporating weighted scenario costs, allowing controlled load shedding through energy not supplied (ENS) penalties while enforcing system reliability via a loss of power supply probability (LPSP) constraint. For optimization, we develop a dynamic parameter bald eagle search (DP-BES) algorithm, demonstrating through MATLAB simulations its superior performance over Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) methods, with the hybrid PV–wind configuration achieving maximum cost reduction (41%) compared to standalone PV (33%) or wind (25%) systems. 
653 |a Fuel cells 
653 |a Load shedding 
653 |a Particle swarm optimization 
653 |a Marine mammals 
653 |a Electrical loads 
653 |a System reliability 
653 |a Distributed generation 
653 |a Random variables 
653 |a Algorithms 
653 |a Wind 
653 |a Systems design 
653 |a Fines & penalties 
653 |a Probability density functions 
653 |a Energy resources 
653 |a Statistical analysis 
653 |a Uncertainty 
653 |a Radiation 
653 |a Photovoltaic cells 
653 |a Efficiency 
653 |a Design optimization 
653 |a Monte Carlo simulation 
653 |a Photovoltaics 
653 |a Cost reduction 
653 |a Renewable resources 
653 |a Objective function 
653 |a Cost analysis 
653 |a Hybrid systems 
653 |a Alternative energy sources 
653 |a Cost control 
653 |a Parameters 
653 |a Operating costs 
653 |a Economic 
700 1 |a Shokouhandeh, Hassan  |u Department of Electrical Engineering National University of Skills (NUS) Tehran Iran 
700 1 |a Outbib, Rachid  |u LIS UMR CNRS Aix-Marseille University 7020 Marseille France 
700 1 |a Colak, Ilhami  |u Faculty of Engineering and Natural Science Department of Electrical and Electronics Engineering Istinye University Istanbul Türkiye 
700 1 |a El Manaa Barhoumi  |u Department of Electrical and Computer Engineering College of Engineering Dhofar University Salalah Oman 
773 0 |t International Journal of Energy Research  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233812252/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3233812252/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233812252/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch