Reinforcement Learning for Algorithmic Trading in Financial Markets

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Gityforoze, Soheil
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233860065
003 UK-CbPIL
020 |a 9798288882517 
035 |a 3233860065 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Gityforoze, Soheil 
245 1 |a Reinforcement Learning for Algorithmic Trading in Financial Markets 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a In multi-period algorithmic trading, determining algorithms that are ideal for riskaverse strategies is a challenging task. This study explored the application of model-free reinforcement learning (RL) in algorithmic trading and analyzed the relationship between risk-averse strategies and implementation of RL algorithms including Q-learning, Greedy-GQ, and SARSA. The data for this quantitative research included one year of the E-mini-NASDAQ-100 futures (2023-2024). Over 7,500 simulation results substantiated a proof of concept that Q-learning can successfully generate risk-adjusted trading signals in the highly liquid technology-focused futures market. With an optimized configuration of hyperparameters including look-back period, basis and reward functions, Q-learning delivered nearly twice the returns of the competing RL algorithms. Beyond absolute returns, Q-learning exhibited lower volatility across key risk metrics and outperformed the NASDAQ-100 benchmark by approximately 75 percentage points. These findings suggest reinforcement learning as a promising artificial intelligence and machine learning framework for alpha generating strategies in systematic trading. 
653 |a Artificial intelligence 
653 |a Computer science 
653 |a Finance 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233860065/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233860065/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch