Secure Frameworks for User Motion Data in Virtual Reality

Na minha lista:
Detalhes bibliográficos
Publicado no:ProQuest Dissertations and Theses (2025)
Autor principal: Guthula, Jayasri Sai Nikitha
Publicado em:
ProQuest Dissertations & Theses
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3233907256
003 UK-CbPIL
020 |a 9798288883170 
035 |a 3233907256 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Guthula, Jayasri Sai Nikitha 
245 1 |a Secure Frameworks for User Motion Data in Virtual Reality 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Virtual Reality is an innovative technology transforming industries such as gaming, healthcare, and remote collaboration. The increasing deployment of these systems results in the continuous collection of telemetry data, including motion patterns, hand gestures, and spatial interactions. This data is valuable for enhancing user experiences and optimizing system performance. However, it also introduces significant privacy risks. Unlike traditional digital footprints, motion data captures fine-grained physical behaviors that can be linked to individual users, making anonymization ineffective in preventing re-identification.This research introduces secure frameworks for user motion data in virtual reality, each proposed framework addressing privacy preservation from a different angle. The first framework uses synthetic data generation to replicate the statistical properties of real telemetry while significantly reducing user re-identification risk. The second framework applies encrypted analytics to enable computation without revealing raw input. Both frameworks are independently designed, implemented, and evaluated using data from a rhythm-based virtual-reality game that reflects natural user interaction.Results from this research demonstrate that each approach preserves analytical utility while significantly reducing privacy risks. Together, these contributions establish a foundation for privacy-aligned telemetry analytics in immersive environments. 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Information science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233907256/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233907256/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch