MARC

LEADER 00000nab a2200000uu 4500
001 3234035388
003 UK-CbPIL
022 |a 1682-1750 
022 |a 2194-9034 
022 |a 0252-8231 
022 |a 0256-1840 
024 7 |a 10.5194/isprs-archives-XLVIII-G-2025-63-2025  |2 doi 
035 |a 3234035388 
045 2 |b d20250101  |b d20251231 
084 |a 263042  |2 nlm 
100 1 |a Shiv Prasad Aggarwal  |u North Eastern Space Applications Centre (NESAC), Shillong, India; North Eastern Space Applications Centre (NESAC), Shillong, India 
245 1 |a EO aided comprehensive flood management for the Brahmaputra and Barak river basin in NE India 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Floods are among the most frequent and devastating natural disasters globally, affecting over 94 million people annually. In Northeast India, particularly in Assam, recurrent floods caused by excessive rainfall, silt deposition causing reduction in river depth, rapid urbanization, and settlements in floodplains lead to significant economic and human losses. The Brahmaputra and Barak river basins with its complex hydrology, faces escalating flood risks due to climate change, highlighting the need for robust flood management systems. This study outlines a comprehensive flood management strategy for these basins integrating early warning systems, flood hazard zonation, and embankment breach monitoring. A Weather Research and Forecasting (WRF) model was employed to generate high-resolution rainfall forecasts, which was validated with satellite-based rainfall datasets. Hydrological modeling using HEC-HMS was conducted for all major tributaries, combining meteorological inputs to estimate river discharge and predict flood probabilities, achieving 80% to 90% success rate with a lead time of 36 to 48 hours. Alerts are disseminated to the authorities through emails and SMS. Embankment breach monitoring using satellite data identified vulnerable points along Assam’s rivers, aiding authorities in proactive flood mitigation. Additionally, flood hazard zonation maps prepared using remote sensing could delineate high-risk areas, supporting long-term structural planning. These efforts demonstrate the effective use of earth observation data, numerical modeling, and in situ measurements in flood mitigation. Despite limitations in meteorological and hydrological models, this system provides critical early warnings, minimizing flood impacts. This integrated approach serves as a model for flood-prone regions globally, emphasizing the importance of advanced technologies and timely interventions in disaster management. 
651 4 |a India 
653 |a River basins 
653 |a Warning systems 
653 |a Embankments 
653 |a Urbanization 
653 |a Early warning systems 
653 |a Remote sensing 
653 |a Water depth 
653 |a Flood hazards 
653 |a Floodplains 
653 |a Rivers 
653 |a Flood control 
653 |a In situ measurement 
653 |a Emergency preparedness 
653 |a Floods 
653 |a River flow 
653 |a Natural disasters 
653 |a Hydrologic models 
653 |a Emergency communications systems 
653 |a Hydrology 
653 |a River discharge 
653 |a Flood predictions 
653 |a Flood forecasting 
653 |a Flood management 
653 |a Water discharge 
653 |a Rainfall 
653 |a Disaster management 
653 |a Climate change 
653 |a Satellites 
653 |a Environmental risk 
653 |a Monitoring 
653 |a Weather forecasting 
653 |a Management systems 
653 |a Modelling 
653 |a Lead time 
653 |a Precipitation 
653 |a Zonation 
653 |a Mitigation 
653 |a Numerical models 
653 |a Disasters 
653 |a Environmental 
700 1 |a Barman, Diganta  |u Water resources division, NESAC, Shillong, India; Water resources division, NESAC, Shillong, India 
700 1 |a Shyam Sundar Kundu  |u Space & atmospheric science division, NESAC, Shillong, India; Space & atmospheric science division, NESAC, Shillong, India 
700 1 |a Kurbah, Shanbor  |u Water resources division, NESAC, Shillong, India; Water resources division, NESAC, Shillong, India 
700 1 |a Das, Ranjit  |u Water resources division, NESAC, Shillong, India; Water resources division, NESAC, Shillong, India 
773 0 |t The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences  |g vol. XLVIII-G-2025 (2025), p. 63 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3234035388/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3234035388/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch