RobotSLAM: A Lightweight Low-cost 3D LiDAR SLAM Handheld Device

Na minha lista:
Detalhes bibliográficos
Publicado no:The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences vol. XLVIII-G-2025 (2025), p. 497
Autor principal: Gao, Huimin
Outros Autores: Kong, Gefei, Huang, Xiaochuan, Fan, Hongchao, Zhong, Ruofei
Publicado em:
Copernicus GmbH
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3234039008
003 UK-CbPIL
022 |a 1682-1750 
022 |a 2194-9034 
022 |a 0252-8231 
022 |a 0256-1840 
024 7 |a 10.5194/isprs-archives-XLVIII-G-2025-497-2025  |2 doi 
035 |a 3234039008 
045 2 |b d20250101  |b d20251231 
084 |a 263042  |2 nlm 
100 1 |a Gao, Huimin  |u College of Resources, Environment and Tourism, Capital Normal University, Beijing, P.R. China; College of Resources, Environment and Tourism, Capital Normal University, Beijing, P.R. China 
245 1 |a RobotSLAM: A Lightweight Low-cost 3D LiDAR SLAM Handheld Device 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a As the importance of Mobile Laser Scanning (MLS) technology in 3D mapping continues to grow, the development of low-cost, portable devices to address the complex mapping needs of various environments has become a key area of research in the industry. Currently, handheld MLS devices are increasingly being applied in a wide range of surveying tasks, especially in small outdoor spaces, indoor environments, and narrow areas with limited accessibility. This study proposes the development of a novel handheld mobile laser scanning system, RobotSLAM Lite. The system integrates a LiDAR sensor and a fisheye camera through a multi-sensor fusion approach to enable Simultaneous Localization and Mapping (SLAM). A dedicated data processing platform, RobotSLAM Engine, has also been developed to generate and optimize point cloud maps with true-color information. To evaluate the system’s performance, the study was conducted at the Norwegian University of Science and Technology, utilizing an experimental building and nearby roads as test sites. High-precision point cloud data obtained from a terrestrial laser scanner (Leica ScanStation P30 TLS) and RTK measurement Ground Control Points (GCPs) were used as reference benchmarks. A four-metric evaluation framework, comprising absolute coordinate deviation, point cloud density distribution, surface roughness, and cloud-to-cloud distance (C2C), was established to quantitatively analyze the mapping accuracy of the device in indoor and outdoor scenarios at various scales. Experimental results indicate that RobotSLAM Lite provides centimeter-level accuracy while significantly reducing both equipment cost and operational complexity, offering a new technological solution for 3D mapping in both large and small spaces. 
653 |a Mapping 
653 |a Simultaneous localization and mapping 
653 |a Benchmarks 
653 |a Indoor environments 
653 |a Low cost 
653 |a Data processing 
653 |a Accuracy 
653 |a Lasers 
653 |a Laser applications 
653 |a Lidar 
653 |a Data analysis 
653 |a Portable equipment 
653 |a Surface roughness 
653 |a Complexity 
653 |a Equipment costs 
653 |a Multisensor fusion 
653 |a Density distribution 
653 |a Environmental 
700 1 |a Kong, Gefei  |u Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway; Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway 
700 1 |a Huang, Xiaochuan  |u Zhengtu 3D (Beijing) Laser Technology Co., Ltd., Beijing, P.R. China; Zhengtu 3D (Beijing) Laser Technology Co., Ltd., Beijing, P.R. China 
700 1 |a Fan, Hongchao  |u Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway; Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway 
700 1 |a Zhong, Ruofei  |u College of Resources, Environment and Tourism, Capital Normal University, Beijing, P.R. China; College of Resources, Environment and Tourism, Capital Normal University, Beijing, P.R. China 
773 0 |t The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences  |g vol. XLVIII-G-2025 (2025), p. 497 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3234039008/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3234039008/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch