Hierarchical distributed edge data aggregation and reporting method based on cluster center selection

Guardat en:
Dades bibliogràfiques
Publicat a:Complex & Intelligent Systems vol. 11, no. 9 (Sep 2025), p. 402
Autor principal: Yang, Wensheng
Altres autors: Pan, Chengsheng
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3234089207
003 UK-CbPIL
022 |a 2199-4536 
022 |a 2198-6053 
024 7 |a 10.1007/s40747-025-02033-1  |2 doi 
035 |a 3234089207 
045 2 |b d20250901  |b d20250930 
100 1 |a Yang, Wensheng  |u Nanjing University of Information Science and Technology, School of Electronic and Information Engineering, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313) 
245 1 |a Hierarchical distributed edge data aggregation and reporting method based on cluster center selection 
260 |b Springer Nature B.V.  |c Sep 2025 
513 |a Journal Article 
520 3 |a With the surge of IoT devices, sensors, and smart terminals has led to distributed data sources and vast volumes of data. These challenges traditional centralized networks and cloud computing architectures, which struggle with bandwidth, latency, and storage limitations. Consequently, decentralized edge computing is crucial, enabling data processing and analysis at the network's edge to alleviate data return pressure and enhance system response speed and reliability. However, traditional centralized data aggregation methods become inefficient in the face of massive data and computing resources, resulting in long transmission times and low processing efficiency. To address these issues, this paper presents a hierarchical distributed edge data aggregation reporting method based on cluster center selection (HDAR-CCS). This method employs a staged approach to distributed data aggregation, utilizing parallel processing at each stage to efficiently handle data from multiple edge data centers. Additionally, an optimal cluster center selection algorithm is proposed, integrating the distances between cluster centers and available network resources. By establishing a selection criterion based on these distances, we design an effective scheme for choosing initial and subsequent cluster centers. Experimental results demonstrate that our approach outperforms existing algorithms, effectively meeting the low latency, high bandwidth, and efficient processing needs of intelligent applications. 
653 |a Data management 
653 |a Parallel processing 
653 |a Big Data 
653 |a Computer centers 
653 |a Data processing 
653 |a Communication 
653 |a Bandwidths 
653 |a Cloud computing 
653 |a Edge computing 
653 |a Network latency 
653 |a Algorithms 
653 |a Clusters 
653 |a Energy consumption 
653 |a Data transmission 
653 |a Smart sensors 
700 1 |a Pan, Chengsheng  |u Nanjing University of Information Science and Technology, School of Electronic and Information Engineering, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313) 
773 0 |t Complex & Intelligent Systems  |g vol. 11, no. 9 (Sep 2025), p. 402 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3234089207/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3234089207/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3234089207/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch