Adaptive Bayesian optimization for proportional derivative control in double-acting piston pump ventilators

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:SN Applied Sciences vol. 7, no. 8 (Aug 2025), p. 848
Egile nagusia: Truong, Cong Toai
Beste egile batzuk: Phan, Trung Dat, Duong, Van Tu, Nguyen, Huy Hung, Nguyen, Thanh Truong, Nguyen, Tan Tien
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3234465944
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07176-x  |2 doi 
035 |a 3234465944 
045 2 |b d20250801  |b d20250831 
100 1 |a Truong, Cong Toai  |u Ho Chi Minh City University of Technology (HCMUT), Key Laboratory of Digital Control and System Engineering (DCSELab), Faculty of Mechanical Engineering, Ho Chi Minh City, Vietnam (GRID:grid.444828.6) (ISNI:0000 0001 0111 2723); Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
245 1 |a Adaptive Bayesian optimization for proportional derivative control in double-acting piston pump ventilators 
260 |b Springer Nature B.V.  |c Aug 2025 
513 |a Journal Article 
520 3 |a Respiratory pandemics have intensified the global demand for low-cost mechanical ventilators, particularly in resource-constrained settings such as low- and middle-income countries. Numerous studies have developed simple ventilators, including bag valve mask ventilators, centrifugal blower ventilators, pneumatic ventilators, or double-acting piston pump ventilators, to prepare for future respiratory pandemics. While these ventilators share the common goal of maintaining precise air volume and pressure control, the practical development of control systems for double-acting piston pump ventilators remains under-explored. Given the complexity of developing accurate mathematical models for double-acting piston pump ventilators, this paper proposes a model-free optimization approach for controlling a double-acting piston pump used for ventilators. The method integrates a conventional proportional derivative control algorithm with Bayesian optimization to rapidly determine optimal control parameters without a precise system model and adaptively re-tune these parameters in response to fluctuations in patient respiratory conditions. Simulation results indicate that the Bayesian optimization algorithm exposes controller parameters nearly identical to those found via the grid search method, with comparable system responses. Experimental results demonstrate that the proposed algorithm significantly improves system performance, reducing both tidal volume error and control cost compared to manual tuning. Additionally, both simulation and experimental findings confirm the algorithm’s ability to automatically re-adjust controller parameters to enhance ventilation performance in response to sudden respiratory changes. The proposed control strategy aims to enhance performance while maintaining simplicity and cost-effectiveness, making it suitable for low-cost ventilators in critical healthcare environments.Article highlights<list list-type="bullet"><list-item></list-item>A Bayesian optimization-based method enables real-time tuning for volume control mode;<list-item>The objective function integrates control cost to reduce actuator oscillations;</list-item><list-item>A Root Locus-based approach constrains the search space for better stability.</list-item> 
653 |a Pandemics 
653 |a Control theory 
653 |a Respiration 
653 |a Oscillations 
653 |a Ventilators 
653 |a Control systems 
653 |a Mathematical models 
653 |a Algorithms 
653 |a Volume controls 
653 |a Optimization 
653 |a Proportional derivative 
653 |a Optimal control 
653 |a Ventilation 
653 |a Lungs 
653 |a Cost effectiveness 
653 |a Simulation 
653 |a Low cost 
653 |a Control algorithms 
653 |a Bayesian analysis 
653 |a Search methods 
653 |a Genetic algorithms 
653 |a Root locus 
653 |a Objective function 
653 |a Controllers 
653 |a Mechanical ventilation 
653 |a Tuning 
653 |a Methods 
653 |a Real time 
653 |a Parameters 
653 |a Actuators 
653 |a Environmental 
700 1 |a Phan, Trung Dat  |u Ho Chi Minh City University of Technology (HCMUT), Key Laboratory of Digital Control and System Engineering (DCSELab), Faculty of Mechanical Engineering, Ho Chi Minh City, Vietnam (GRID:grid.444828.6) (ISNI:0000 0001 0111 2723); Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
700 1 |a Duong, Van Tu  |u Ho Chi Minh City University of Technology (HCMUT), Key Laboratory of Digital Control and System Engineering (DCSELab), Faculty of Mechanical Engineering, Ho Chi Minh City, Vietnam (GRID:grid.444828.6) (ISNI:0000 0001 0111 2723); Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
700 1 |a Nguyen, Huy Hung  |u Sai Gon University, Faculty of Electronics and Telecommunication, Ho Chi Minh City, Vietnam (GRID:grid.449531.e) 
700 1 |a Nguyen, Thanh Truong  |u Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X); Ho Chi Minh City University of Technology (HCMUT), Industrial Maintenance Training Center, Ho Chi Minh City, Vietnam (GRID:grid.444828.6) (ISNI:0000 0001 0111 2723) 
700 1 |a Nguyen, Tan Tien  |u Ho Chi Minh City University of Technology (HCMUT), Key Laboratory of Digital Control and System Engineering (DCSELab), Faculty of Mechanical Engineering, Ho Chi Minh City, Vietnam (GRID:grid.444828.6) (ISNI:0000 0001 0111 2723); Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 8 (Aug 2025), p. 848 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3234465944/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3234465944/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3234465944/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch