Simulations and active learning enable efficient identification of an experimentally-validated broad coronavirus inhibitor
Guardado en:
| Publicado en: | Nature Communications vol. 16, no. 1 (2025), p. 6949-6961 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , , , , , |
| Publicado: |
Nature Publishing Group
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Drug screening resembles finding a needle in a haystack: identifying a few effective inhibitors from a large pool of potential drugs. Large experimental screens are expensive and time-consuming, while virtual screening trades off computational efficiency and experimental correlation. Here we develop a framework that combines molecular dynamics (MD) simulations with active learning. Two components drastically reduce the number of candidates needing experimental testing to less than 20: (1) a target-specific score that evaluates target inhibition and (2) extensive MD simulations to generate a receptor ensemble. The active learning approach reduces the number of compounds requiring experimental testing to less than 10 and cuts computational costs by ∼29-fold. Using this framework, we discovered BMS-262084 as a potent inhibitor of TMPRSS2 (IC50 = 1.82 nM). Cell-based experiments confirmed BMS-262084’s efficacy in blocking entry of various SARS-CoV-2 variants and other coronaviruses. The identified inhibitor holds promise for treating viral and other diseases involving TMPRSS2.Approaches making virtual and experimental screening more resource-efficient are vital for identifying effective inhibitors from a vast pool of potential drugs but remain elusive. Here, the authors address this issue by developing an active learning framework leveraging high-throughput molecular dynamics simulations to identify potential inhibitors for therapeutic applications. |
|---|---|
| ISSN: | 2041-1723 |
| DOI: | 10.1038/s41467-025-62139-5 |
| Fuente: | Health & Medical Collection |