Diffraction classification imaging using coordinate attention enhanced DenseNet

Guardado en:
Detalles Bibliográficos
Publicado en:Petroleum Science vol. 22, no. 6 (Jun 2025), p. 2353-2384
Autor principal: Sheng, Tong-Jie
Otros Autores: Zhao, Jing-Tao, Peng, Su-Ping, Chen, Zong-Nan, Yang, Jie
Publicado:
KeAi Publishing Communications Ltd
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3234716698
003 UK-CbPIL
022 |a 1672-5107 
022 |a 1995-8226 
024 7 |a 10.1016/j.petsci.2025.03.039  |2 doi 
035 |a 3234716698 
045 2 |b d20250601  |b d20250630 
100 1 |a Sheng, Tong-Jie  |u College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China 
245 1 |a Diffraction classification imaging using coordinate attention enhanced DenseNet 
260 |b KeAi Publishing Communications Ltd  |c Jun 2025 
513 |a Journal Article 
520 3 |a In oil and gas exploration, small-scale karst cavities and faults are important targets. The former often serve as reservoir space for carbonate reservoirs, while the latter often provide migration pathways for oil and gas. Due to these differences, the classification and identification of karst cavities and faults are of great significance for reservoir development. Traditional seismic attributes and diffraction imaging techniques can effectively identify discontinuities in seismic images, but these techniques do not distinguish whether these discontinuities are karst cavities, faults, or other structures. It poses a challenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic attribute maps and diffraction imaging profiles. In seismic data, the scattering waves are associated with small-scale scatters like karst cavities, while diffracted waves are seismic responses from discontinuous structures such as faults, reflector edges and fractures. In order to achieve classification and identification of small-scale karst cavities and faults in seismic images, we propose a diffraction classification imaging method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a modified DenseNet. We introduce a coordinate attention module into DenseNet, enabling more precise extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle image matrix. Leveraging these extracted features, the modified DenseNet can produce reliable probabilities for diffracted/scattered waves, achieving high-accuracy automatic classification of cavities and faults based on diffraction imaging. The proposed method achieves 96% classification accuracy on the synthetic dataset. The field data experiment demonstrates that the proposed method can accurately classify small-scale faults and scatterers, further enhancing the resolution of diffraction imaging in complex geologic structures, and contributing to the localization of karstic fracture-cavern reservoirs. 
653 |a Feature extraction 
653 |a Imaging techniques 
653 |a Kinematics 
653 |a Automatic classification 
653 |a Accuracy 
653 |a Karst 
653 |a Deep learning 
653 |a Classification 
653 |a Azimuth 
653 |a Geological structures 
653 |a Fault lines 
653 |a Oil and gas exploration 
653 |a Waves 
653 |a Diffraction 
653 |a Faults 
653 |a Fault detection 
653 |a Pattern recognition 
653 |a Geology 
653 |a Oil exploration 
653 |a Wave diffraction 
653 |a Seismic response 
653 |a Fractures 
653 |a Discontinuity 
653 |a Reservoirs 
653 |a Structures 
653 |a Seismic data 
653 |a Carbonates 
653 |a Synthetic data 
653 |a Environmental 
700 1 |a Zhao, Jing-Tao  |u Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China 
700 1 |a Peng, Su-Ping  |u State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing, 100083, China 
700 1 |a Chen, Zong-Nan  |u College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China 
700 1 |a Yang, Jie  |u College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China 
773 0 |t Petroleum Science  |g vol. 22, no. 6 (Jun 2025), p. 2353-2384 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3234716698/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3234716698/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3234716698/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch