Multigroup cooperative evolutionary optimization algorithm combined with quantum entanglement for cross-field applications

Uloženo v:
Podrobná bibliografie
Vydáno v:The Artificial Intelligence Review vol. 58, no. 10 (Oct 2025), p. 327
Hlavní autor: Lian, Zhaoyang
Další autoři: Si, Bailu
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3234787511
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11279-7  |2 doi 
035 |a 3234787511 
045 2 |b d20251001  |b d20251031 
084 |a 68693  |2 nlm 
100 1 |a Lian, Zhaoyang  |u Beijing Normal University, School of Systems Science, Beijing, China (GRID:grid.20513.35) (ISNI:0000 0004 1789 9964) 
245 1 |a Multigroup cooperative evolutionary optimization algorithm combined with quantum entanglement for cross-field applications 
260 |b Springer Nature B.V.  |c Oct 2025 
513 |a Journal Article 
520 3 |a Swarm intelligence algorithms are a class of bionic probabilistic heuristic search methods that are inspired by the collective behaviors of biological agents. In this paper, a multigroup cooperative evolutionary optimization algorithm is proposed by referring to the interaction behaviors of species diversity and stability in the ecosystem. First, the group updating mechanism of the traditional seeking and tracking mode with a dynamic population update mechanism is adopted. The multi-population interactive update group and the quantum entanglement update group are introduced to guide the algorithm to gradually approach the global optimal solution. Second, the proposed bionic algorithm is extended for cross-field applications. The algorithm is applied to solve the function optimization problems, as well as problems in four distinct application fields, including robot routing optimization of grid maps, vehicle scheduling optimization of dairy enterprises, location optimization of logistics centers, and plasma trajectory planning optimization. The proposed multigroup cooperative evolutionary optimization algorithm achieves competitive results in these application fields, thus demonstrating its versatility and robustness. 
653 |a Teaching 
653 |a Swarm intelligence 
653 |a Quantum entanglement 
653 |a Evolution 
653 |a Trajectory optimization 
653 |a Bionics 
653 |a Animals 
653 |a Cooperation 
653 |a Biological evolution 
653 |a Genetic algorithms 
653 |a Food chains 
653 |a Foraging behavior 
653 |a Optimization algorithms 
653 |a Trajectory planning 
653 |a Evolutionary algorithms 
653 |a Application 
653 |a Algorithms 
653 |a Heuristic 
653 |a Collective behavior 
653 |a Robustness 
653 |a Logistics 
653 |a Intelligence 
653 |a Optimization 
653 |a Tracking 
700 1 |a Si, Bailu  |u Beijing Normal University, School of Systems Science, Beijing, China (GRID:grid.20513.35) (ISNI:0000 0004 1789 9964) 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 10 (Oct 2025), p. 327 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3234787511/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3234787511/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3234787511/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch