Multigroup cooperative evolutionary optimization algorithm combined with quantum entanglement for cross-field applications
Uloženo v:
| Vydáno v: | The Artificial Intelligence Review vol. 58, no. 10 (Oct 2025), p. 327 |
|---|---|
| Hlavní autor: | |
| Další autoři: | |
| Vydáno: |
Springer Nature B.V.
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full Text Full Text - PDF |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3234787511 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 0269-2821 | ||
| 022 | |a 1573-7462 | ||
| 024 | 7 | |a 10.1007/s10462-025-11279-7 |2 doi | |
| 035 | |a 3234787511 | ||
| 045 | 2 | |b d20251001 |b d20251031 | |
| 084 | |a 68693 |2 nlm | ||
| 100 | 1 | |a Lian, Zhaoyang |u Beijing Normal University, School of Systems Science, Beijing, China (GRID:grid.20513.35) (ISNI:0000 0004 1789 9964) | |
| 245 | 1 | |a Multigroup cooperative evolutionary optimization algorithm combined with quantum entanglement for cross-field applications | |
| 260 | |b Springer Nature B.V. |c Oct 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Swarm intelligence algorithms are a class of bionic probabilistic heuristic search methods that are inspired by the collective behaviors of biological agents. In this paper, a multigroup cooperative evolutionary optimization algorithm is proposed by referring to the interaction behaviors of species diversity and stability in the ecosystem. First, the group updating mechanism of the traditional seeking and tracking mode with a dynamic population update mechanism is adopted. The multi-population interactive update group and the quantum entanglement update group are introduced to guide the algorithm to gradually approach the global optimal solution. Second, the proposed bionic algorithm is extended for cross-field applications. The algorithm is applied to solve the function optimization problems, as well as problems in four distinct application fields, including robot routing optimization of grid maps, vehicle scheduling optimization of dairy enterprises, location optimization of logistics centers, and plasma trajectory planning optimization. The proposed multigroup cooperative evolutionary optimization algorithm achieves competitive results in these application fields, thus demonstrating its versatility and robustness. | |
| 653 | |a Teaching | ||
| 653 | |a Swarm intelligence | ||
| 653 | |a Quantum entanglement | ||
| 653 | |a Evolution | ||
| 653 | |a Trajectory optimization | ||
| 653 | |a Bionics | ||
| 653 | |a Animals | ||
| 653 | |a Cooperation | ||
| 653 | |a Biological evolution | ||
| 653 | |a Genetic algorithms | ||
| 653 | |a Food chains | ||
| 653 | |a Foraging behavior | ||
| 653 | |a Optimization algorithms | ||
| 653 | |a Trajectory planning | ||
| 653 | |a Evolutionary algorithms | ||
| 653 | |a Application | ||
| 653 | |a Algorithms | ||
| 653 | |a Heuristic | ||
| 653 | |a Collective behavior | ||
| 653 | |a Robustness | ||
| 653 | |a Logistics | ||
| 653 | |a Intelligence | ||
| 653 | |a Optimization | ||
| 653 | |a Tracking | ||
| 700 | 1 | |a Si, Bailu |u Beijing Normal University, School of Systems Science, Beijing, China (GRID:grid.20513.35) (ISNI:0000 0004 1789 9964) | |
| 773 | 0 | |t The Artificial Intelligence Review |g vol. 58, no. 10 (Oct 2025), p. 327 | |
| 786 | 0 | |d ProQuest |t ABI/INFORM Global | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3234787511/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3234787511/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3234787511/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |