Numerical study of the error sources in the experimental estimation of thermal diffusivity: an application to debris-covered glaciers

保存先:
書誌詳細
出版年:The Cryosphere vol. 19, no. 7 (2025), p. 2715
第一著者: Beck, Calvin
その他の著者: Nicholson, Lindsey
出版事項:
Copernicus GmbH
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3234789285
003 UK-CbPIL
022 |a 1994-0424 
022 |a 1994-0416 
024 7 |a 10.5194/tc-19-2715-2025  |2 doi 
035 |a 3234789285 
045 2 |b d20250101  |b d20251231 
084 |a 123641  |2 nlm 
100 1 |a Beck, Calvin  |u Normandie Université – UNICAEN – UNIROUEN, CNRS, UMR 6143 M2C, Laboratoire Morphodynamique Continentale et Côtière, Caen, France; Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria 
245 1 |a Numerical study of the error sources in the experimental estimation of thermal diffusivity: an application to debris-covered glaciers 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a A surface debris layer significantly modifies underlying ice melt dependent on the thermal resistance of the debris cover, with thermal resistance being a function of debris thickness and effective thermal conductivity. Thus, these terms are required in models of sub-debris ice melt. The most commonly used method to calculate effective thermal conductivity of supraglacial debris layers applies heat diffusion principles to a vertical array of temperature measurements through the supraglacial debris cover combined with an estimate of volumetric heat capacity of the debris as presented by <xref ref-type="bibr" rid="bib1.bibx11" id="text.1" />. Application of this approach is only appropriate if the temperature data indicate that the system is predominantly conductive and, even in the case of a pure conductive system, the method necessarily introduces numerical errors that can impact the derived values. The sampling strategies used in published applications of this method vary in sensor precision and spatiotemporal temperature sampling strategies, hampering inter-site comparisons of the derived values and their usage at unmeasured sites. To address this, we use synthetic datasets to isolate the numerical errors of the temporal and spatial sampling interval and the precision of sensor temperature and position in recovering known thermal diffusivity values using this method. On the basis of this, we can establish sampling an analytical strategy to minimize the methodological errors. Our results show that increasing temporal and spatial sampling intervals increases (or leads to) truncation errors and systematically underestimates calculated values of thermal diffusivity. The thermistor precision, the shape of the diurnal temperature cycle, the debris thermal diffusivity, and misrepresenting the vertical thermistor position also result in systematic errors that show strong cross-dependencies dependent on signal-to-noise ratio with which spatiotemporal temperature gradients are captured. We provide an interactive analysis tool and best-practice guidelines to help researchers investigate the effect of the sampling interval on calculated sub-debris ice melt and plan future measurement campaigns. These findings can be used to plan optimal field-sampling strategies for future campaigns and as a guide for common reanalysis of existing datasets to allow intercomparison across sites. 
653 |a Truncation errors 
653 |a Thermal conductivity 
653 |a Glaciers 
653 |a Thermal diffusivity 
653 |a Heat diffusion 
653 |a Thermal resistance 
653 |a Detritus 
653 |a Sampling 
653 |a Diffusivity 
653 |a Vertical orientation 
653 |a Radiation 
653 |a Diffusion coefficients 
653 |a Moisture content 
653 |a Temperature data 
653 |a Heat transfer 
653 |a Systematic errors 
653 |a Datasets 
653 |a Thermistors 
653 |a Ice 
653 |a Glacial drift 
653 |a Temperature gradients 
653 |a Ice melting 
653 |a Diffusion layers 
653 |a Signal-to-noise ratio 
653 |a Intercomparison 
653 |a Temperature measurement 
653 |a Specific heat 
653 |a Daily temperatures 
653 |a Debris 
653 |a Heat conductivity 
653 |a Position sensing 
653 |a Temperature 
653 |a Ablation 
653 |a Synthetic data 
653 |a Signal to noise ratio 
653 |a Environmental 
700 1 |a Nicholson, Lindsey  |u Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria 
773 0 |t The Cryosphere  |g vol. 19, no. 7 (2025), p. 2715 
786 0 |d ProQuest  |t Continental Europe Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3234789285/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3234789285/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3234789285/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch