Generalizable Face Forgery Detection with Metric Learning and Domain-Adversarial Training

Guardado en:
Detalles Bibliográficos
Publicado en:PQDT - Global (2025)
Autor principal: Kara, Mustafa Hakan
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3235007799
003 UK-CbPIL
020 |a 9798290652306 
035 |a 3235007799 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Kara, Mustafa Hakan 
245 1 |a Generalizable Face Forgery Detection with Metric Learning and Domain-Adversarial Training 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a As face forgeries generated by deep neural networks become increasingly sophisticated, detecting face manipulations in digital media has posed a significant challenge, underscoring the importance of maintaining digital media integrity and combating visual disinformation. Current detection models, predominantly based on supervised training with domain-specific data, often falter against forgeries generated by unencountered techniques. In response to this challenge, we introduce Trident,a face forgery detection framework that employs triplet learning with a Siamese network architecture for enhanced adaptability across diverse forgery methods. Tridentis trained on curated triplets to isolate nuanced differences of forgeries, capturing fine-grained features that distinguish pristine samples from manipulated ones while controlling for other variables. To further enhance generalizability, we incorporate domain-adversarial training with a Forgery Discriminator. This adversarial component guides our embedding model towards forgery-agnostic representations, improving its robustness to unseen manipulations. In addition, we prevent gradient flow from the classifier head to the embedding model, avoiding overfitting induced by artifacts peculiar to certain forgeries. Comprehensive evaluations across multiple benchmarks and ablation studies demonstrate the effectiveness of our framework. 
653 |a Physiology 
653 |a Forgery 
653 |a Deep learning 
653 |a Deepfake 
653 |a Back propagation 
653 |a Video recordings 
653 |a Neural networks 
653 |a Adaptation 
653 |a Design 
653 |a Semantics 
653 |a Triplets 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3235007799/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3235007799/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch