A novel economic load dispatch method of microgrid based on hybrid slime mould and genetic algorithm

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Electrical Systems and Information Technology vol. 12, no. 1 (Dec 2025), p. 53
1. Verfasser: Ba, Wei
Weitere Verfasser: Sun, Wei, Zhao, Chunjiang, Li, Qi
Veröffentlicht:
Springer Nature B.V.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3235233274
003 UK-CbPIL
022 |a 2314-7172 
024 7 |a 10.1186/s43067-025-00252-7  |2 doi 
035 |a 3235233274 
045 2 |b d20251201  |b d20251231 
100 1 |a Ba, Wei  |u Dalian Jiaotong University, School of Automation and Electrical Engineering, Dalian, China (GRID:grid.462078.f) (ISNI:0000 0000 9452 3021) 
245 1 |a A novel economic load dispatch method of microgrid based on hybrid slime mould and genetic algorithm 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a The economic load dispatch problem of microgrid strives to optimize the allocation of total power demand among generating units under specific constraints. Many optimization techniques have been used to solve this problem in power systems; however, achieving the optimal solution is considered difficult due to the involvement of a nonlinear objective function and large search domain. In order to achieve economic load dispatch more quickly and accurately, a novel economic load dispatch method of microgrid based on hybrid slime mould and genetic algorithm (GSMA) is proposed in this paper. Objective function models and their constraints based on wind, photovoltaic, energy storage and fuel power generation are presented. For the early iterations of the method, crossover and mutation of the genetic algorithm are used to increase the diversity of the population. When the number of iterations reaches the threshold, the slime mould algorithm is used to improve the adaptability to complex objective functions. The velocity matrix is introduced to adjust the direction and speed of the individual movement to enhance the searching ability in GSMA. For performance evaluation, GSMA is compared with slime mould algorithm (SMA), grey wolf optimizer (GWO), sparrow search algorithm (SSA), Harris Hawks optimization (HHO), whale optimization algorithm (WOA) and particle swarm optimization (PSO) using standard optimization functions. The experimental results show that GSMA converges to the optimal solution faster than other algorithms. The algorithms are used for economic load dispatch on the simulation test system. The GSMA spends minimum dispatch cost and achieves the best dispatch results compared to other algorithms. It further demonstrates the effectiveness of the new method in solving the economic load dispatch problem of microgrid. 
653 |a Particle swarm optimization 
653 |a Integer programming 
653 |a Pollutants 
653 |a Electrical loads 
653 |a Performance evaluation 
653 |a Distributed generation 
653 |a Genetic algorithms 
653 |a Artificial intelligence 
653 |a Electricity 
653 |a Optimization techniques 
653 |a Slime 
653 |a Renewable resources 
653 |a Search algorithms 
653 |a Power supply 
653 |a Linear programming 
653 |a Pollution control costs 
653 |a Pollution control 
653 |a Alternative energy sources 
653 |a Diesel engines 
653 |a Energy resources 
653 |a Constraints 
653 |a Optimization algorithms 
653 |a Power dispatch 
700 1 |a Sun, Wei  |u Dalian Jiaotong University, School of Automation and Electrical Engineering, Dalian, China (GRID:grid.462078.f) (ISNI:0000 0000 9452 3021) 
700 1 |a Zhao, Chunjiang  |u Dalian Jiaotong University, School of Automation and Electrical Engineering, Dalian, China (GRID:grid.462078.f) (ISNI:0000 0000 9452 3021) 
700 1 |a Li, Qi  |u Dalian University of Technology, School of Control Science and Engineering, Dalian, China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930) 
773 0 |t Journal of Electrical Systems and Information Technology  |g vol. 12, no. 1 (Dec 2025), p. 53 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3235233274/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3235233274/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3235233274/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch