High performance data integration for large-scale analyses of incomplete Omic profiles using Batch-Effect Reduction Trees (BERT)

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 7104-7117
Autor principal: Schumann, Yannis
Otros Autores: Schlumbohm, Simon, Neumann, Julia E., Neumann, Philipp
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3235846086
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-62237-4  |2 doi 
035 |a 3235846086 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
100 1 |a Schumann, Yannis  |u Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (ROR: https://ror.org/01js2sh04) (GRID: grid.7683.a) (ISNI: 0000 0004 0492 0453) 
245 1 |a High performance data integration for large-scale analyses of incomplete <i>Omic</i> profiles using Batch-Effect Reduction Trees (BERT) 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Data from high-throughput technologies assessing global patterns of biomolecules (omic data), is often afflicted with missing values and with measurement-specific biases (batch-effects), that hinder the quantitative comparison of independently acquired datasets. This work introduces batch-effect reduction trees (BERT), a high-performance method for data integration of incomplete omic profiles. We characterize BERT on large-scale data integration tasks with up to 5000 datasets from simulated and experimental data of different quantification techniques and omic types (proteomics, transcriptomics, metabolomics) as well as other datatypes e.g., clinical data, emphasizing the broad scope of the algorithm. Compared to the only available method for integration of incomplete omic data, HarmonizR, our method (1)&#xa0;retains up to five orders of magnitude more numeric values, (2) leverages multi-core and distributed-memory systems for up to 11&#xa0;× runtime improvement (3) considers covariates and reference measurements to account for severely imbalanced or sparsely distributed conditions (up to 2&#xa0;× improvement of average-silhouette-width).This study presents BERT, an algorithm for high-performance integration of incomplete omics data with robustness to unequal phenotype distribution. It validates the method on simulated and experimental data from proteomics, metabolomics and transcriptomics. 
653 |a Experimental data 
653 |a Trees 
653 |a Datasets 
653 |a Algorithms 
653 |a Proteomics 
653 |a Estimates 
653 |a Metabolomics 
653 |a Phenotypes 
653 |a Quality control 
653 |a Measurement techniques 
653 |a Data integration 
653 |a Transcriptomics 
653 |a Distributed memory 
653 |a Integration 
653 |a Biomolecules 
653 |a Environmental 
700 1 |a Schlumbohm, Simon  |u Chair for High Performance Computing, Helmut-Schmidt-University Hamburg, Hamburg, Germany (ROR: https://ror.org/04e8jbs38) (GRID: grid.49096.32) (ISNI: 0000 0001 2238 0831) 
700 1 |a Neumann, Julia E.  |u Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany (ROR: https://ror.org/01zgy1s35) (GRID: grid.13648.38) (ISNI: 0000 0001 2180 3484); Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany (ROR: https://ror.org/01zgy1s35) (GRID: grid.13648.38) (ISNI: 0000 0001 2180 3484) 
700 1 |a Neumann, Philipp  |u Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (ROR: https://ror.org/01js2sh04) (GRID: grid.7683.a) (ISNI: 0000 0004 0492 0453); High Performance Computing &amp;amp; Data Science, University of Hamburg, Hamburg, Germany (ROR: https://ror.org/00g30e956) (GRID: grid.9026.d) (ISNI: 0000 0001 2287 2617) 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 7104-7117 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3235846086/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3235846086/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3235846086/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch