Evaluating Financial Prediction Models for Business Failure in Moroccan Industrial Firms: Analysis and Strategic Implications

Guardado en:
Bibliografiske detaljer
Udgivet i:African Journal of Business and Economic Research vol. 20, no. 2 (Jun 2025), p. 171-197
Hovedforfatter: Elmazouny, Chayma
Andre forfattere: Bourhaba, Zineb, Kandrouch Abdelkrim
Udgivet:
Adonis & Abbey Publishers Ltd
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3236094427
003 UK-CbPIL
022 |a 1750-4554 
022 |a 1750-4562 
024 7 |a 10.31920/1750-4562/2025/v20n2a8  |2 doi 
035 |a 3236094427 
045 2 |b d20250601  |b d20250630 
084 |a 292036  |2 nlm 
100 1 |a Elmazouny, Chayma 
245 1 |a Evaluating Financial Prediction Models for Business Failure in Moroccan Industrial Firms: Analysis and Strategic Implications 
260 |b Adonis & Abbey Publishers Ltd  |c Jun 2025 
513 |a Journal Article 
520 3 |a This paper aims to identify some financial characteristics that differentiate healthy companies from failing ones and evaluate the performance of five classification methods for predicting the business failure of Moroccan firms: LDA, LR, SVM, ANN, and K-NN. Using 51 healthy and 40 failing companies in 2019, it was found that failing firms, compared with healthy companies, exhibited lower profitability, limited internal generation of resources, high dependence on supplier credit, and lengthy recovery periods. Results from K-fold cross-validation show that LDA can detect failures but returns many false positives; ANNs balance accuracy with sensitivity well. SVM reduces false positives but could miss some failures, while K-NN and LR are unpredictable with complex data. Bootstrapping necessitates model generalisation, where ANNs are the most acceptable model for classification-based prediction. The study offers valuable insights for stakeholders to enhance financial risk assessments despite limitations such as sample size and static analysis. 
651 4 |a Morocco 
653 |a Profitability 
653 |a Prediction models 
653 |a Companies 
653 |a Classification 
653 |a Bootstrap method 
653 |a Risk assessment 
653 |a Discriminant analysis 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Predictions 
653 |a Stakeholders 
653 |a Industrial enterprises 
653 |a Bootstrapping 
653 |a Business 
700 1 |a Bourhaba, Zineb 
700 1 |a Kandrouch Abdelkrim 
773 0 |t African Journal of Business and Economic Research  |g vol. 20, no. 2 (Jun 2025), p. 171-197 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3236094427/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3236094427/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch