Two metrics for quantifying systematic errors in diffraction experiments: systematic errors in the variance of the observed intensities and agreement factor gap

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Applied Crystallography vol. 58, no. 4 (Aug 2025), p. 1174
Autor principal: Henn, Julian
Publicat:
Blackwell Publishing Ltd.
Matèries:
Accés en línia:Citation/Abstract
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3236158598
003 UK-CbPIL
022 |a 0021-8898 
022 |a 1600-5767 
024 7 |a 10.1107/S1600576725004376  |2 doi 
035 |a 3236158598 
045 2 |b d20250801  |b d20250831 
084 |a 68205  |2 nlm 
100 1 |a Henn, Julian  |u Germany 
245 1 |a Two metrics for quantifying systematic errors in diffraction experiments: systematic errors in the variance of the observed intensities and agreement factor gap 
260 |b Blackwell Publishing Ltd.  |c Aug 2025 
513 |a Journal Article 
520 3 |a The increase in the weighted agreement factor due to systematic errors in single‐crystal X‐ray and neutron diffraction experiments can be quantified precisely, provided the estimated standard uncertainties of the observed intensities, s.u.(Iobs), are sufficiently accurate. The increase in the weighted agreement factor quantifies the `costs' of the systematic errors. This is achieved by comparison with the lowest possible weighted agreement factor for the specific data set. Application to 314 published data sets from inorganic, metal–organic and organic compounds shows that systematic errors increase the weighted agreement factor by a surprisingly large factor of g = 3.31 (or more) in 50% of the small‐molecule data sets from the sample. Examples of twinning, disorder, neglect of bonding densities and low‐energy contamination are taken from the literature and examined with respect to the increase in the weighted agreement factor, which is typically less than three. The large value g = 3.31 for the supposedly simple case of rather small molecules, as opposed to macromolecules, is interpreted as a warning sign that there are not only the expected remaining systematic errors, like not‐modelled disorder, unrecognized twinning or neglect of bonding electrons or similar errors, but additionally a common systematic error of insufficiently accurate s.u.(Iobs). Inadequate s.u.(Iobs) may not just compromise the model parameters and model parameter errors; they are also a threat to the whole data quality evaluation procedure that relies crucially on adequate s.u.(Iobs). 
653 |a Agreements 
653 |a Systematic errors 
653 |a Neutron diffraction 
653 |a Quality assessment 
653 |a Datasets 
653 |a Organic compounds 
653 |a Parameters 
653 |a Bonding 
653 |a Environmental 
773 0 |t Journal of Applied Crystallography  |g vol. 58, no. 4 (Aug 2025), p. 1174 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3236158598/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch