Meta-Explainable Machine Learning Model for Public Health Care Resource Management

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Database Management vol. 36, no. 1 (2025), p. 1-29
Autor principal: Patel, Shivshanker Singh
Publicado em:
IGI Global
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3236218265
003 UK-CbPIL
022 |a 1063-8016 
022 |a 1533-8010 
022 |a 1047-9430 
024 7 |a 10.4018/JDM.386382  |2 doi 
035 |a 3236218265 
045 2 |b d20250101  |b d20250331 
084 |a 11186  |2 nlm 
100 1 |a Patel, Shivshanker Singh  |u Indian Institute of Management, Visakhapatnam, India 
245 1 |a Meta-Explainable Machine Learning Model for Public Health Care Resource Management 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a This study introduces a new meta-explainable machine learning methodology to enhance medical care recommendations and optimize healthcare operations through targeted interventions. It could assist a large, and diverse population facing challenges in resource allocation and operational complexity. The proposed method utilizes a two-stage model. It first employs an Explainable Boosting Machine (EBM) and then provides the output from the initial phase to an unsupervised machine learning framework. It examines diverse aspects to identify the most critical set of features for focused operations and policy recommendations in designated areas. The research is based on data collected from three regions of India about maternal health and maternal mortality. The results highlight the accuracy of healthcare operations, thereby facilitating data-informed decisions. Implementing the method outlined in this paper in any other region across the globe will significantly enhance the design and execution of targeted healthcare initiatives, enhancing public health outcomes and optimizing resource. 
653 |a Womens health 
653 |a Public health 
653 |a Health care policy 
653 |a Maternal mortality 
653 |a Health services 
653 |a Machine learning 
653 |a Unsupervised learning 
653 |a Regions 
653 |a Resource allocation 
653 |a Health status 
653 |a Resource management 
653 |a Health initiatives 
653 |a Global health 
653 |a COVID-19 
653 |a Clinical outcomes 
653 |a Artificial intelligence 
653 |a Maternal & child health 
653 |a Health care 
653 |a Maternal characteristics 
653 |a Decision making 
653 |a Optimization 
653 |a Mothers 
773 0 |t Journal of Database Management  |g vol. 36, no. 1 (2025), p. 1-29 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3236218265/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3236218265/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch