Lie derivative algorithm for preserving geometry on cylindrical manifolds

Shranjeno v:
Bibliografske podrobnosti
izdano v:Nonlinear Dynamics vol. 113, no. 17 (Sep 2025), p. 22799
Glavni avtor: Huang, Feilong
Drugi avtorji: Song, Yuhan, Jiang, Wenan, Chen, Liqun
Izdano:
Springer Nature B.V.
Teme:
Online dostop:Citation/Abstract
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3236296343
003 UK-CbPIL
022 |a 0924-090X 
022 |a 1573-269X 
024 7 |a 10.1007/s11071-025-11358-y  |2 doi 
035 |a 3236296343 
045 2 |b d20250901  |b d20250930 
100 1 |a Huang, Feilong  |u School of Mechanics and Engineering Science, Shanghai, China 
245 1 |a Lie derivative algorithm for preserving geometry on cylindrical manifolds 
260 |b Springer Nature B.V.  |c Sep 2025 
513 |a Journal Article 
520 3 |a For geometric nonlinear systems with cylindrical characteristics, they play a crucial role in nonlinear dynamics. Such systems can accurately capture the inherent geometric features, while also possessing the geometric structures of cylindrical manifolds. In the traditional numerical method, the geometric characteristics of the system are rarely considered in the calculation process, so some geometric properties might be lost, leading to incorrect results. Therefore, exploring numerical algorithms that preserve geometric structures is a meaningful topic. In this paper, based on the Lie derivative algorithm, a new geometric numerical integration algorithm is proposed. Meanwhile, the geometric constraint equations are also discretized combined with the Newton-Raphson method. A class of nonlinear dynamic systems exhibiting observable three-dimensional cylindrical geometric manifolds is analyzed and calculated. Compared to the traditional fourth-order Runge-Kutta algorithm, the proposed algorithm with geometric manifold-constrained iterations is found to not only possess high computational efficiency but also effectively preserve the geometric characteristics of the system manifold during the discrete process. Moreover, the Hamiltonian energy is also discretized and compared. It can be observed that the Hamiltonian function is a first order small quantity of step size, which has approximately energy-preserving at a certain step size. 
653 |a Geometric constraints 
653 |a Energy conservation 
653 |a Accuracy 
653 |a Optimization 
653 |a Newton-Raphson method 
653 |a Runge-Kutta method 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Numerical integration 
653 |a Algorithms 
653 |a Manifolds (mathematics) 
653 |a Methods 
653 |a Eigenvalues 
653 |a Nonlinear systems 
653 |a Dynamical systems 
653 |a Numerical methods 
653 |a Boundary conditions 
653 |a Nonlinear dynamics 
653 |a Geometry 
653 |a Lie groups 
653 |a Hamiltonian functions 
700 1 |a Song, Yuhan  |u College of Physics, Shenyang, China 
700 1 |a Jiang, Wenan  |u Faculty of Civil Engineering and Mechanics, Zhenjiang, China 
700 1 |a Chen, Liqun  |u School of Mechanics and Engineering Science, Shanghai, China 
773 0 |t Nonlinear Dynamics  |g vol. 113, no. 17 (Sep 2025), p. 22799 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3236296343/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch