A new formulation of Hermite–Hadamard–Fejer inequalities connected with an extended fractional operator

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Inequalities and Applications vol. 2025, no. 1 (Dec 2025), p. 92
Autor principal: Younis, Muhammad
Otros Autores: Liu, Zhi Guo, Samraiz, Muhammad, Mehmood, Ahsan
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3236788301
003 UK-CbPIL
022 |a 1025-5834 
022 |a 1029-242X 
024 7 |a 10.1186/s13660-025-03342-2  |2 doi 
035 |a 3236788301 
045 2 |b d20251201  |b d20251231 
084 |a 131530  |2 nlm 
100 1 |a Younis, Muhammad  |u East China Normal University, School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, Shanghai, People’s Republic of China (GRID:grid.22069.3f) (ISNI:0000 0004 0369 6365) 
245 1 |a A new formulation of Hermite–Hadamard–Fejer inequalities connected with an extended fractional operator 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a In this work, we classify the extensions of Hermite–Hadamard(H–H)–Fejer-type inequalities for the fractional operators involving nonlinear kernel. By utilizing these inequalities, we develop many kinds of fractional integral (FI) inequalities. By considering the limiting cases of our main results, we attain the inequalities that already exist in the literature. In our work, we calculate the bounds of well-known fractional problems involving extended fractional operators. As implementations of the proved results, we calculate the midpoint-type inequalities. In the last section as the application of our defined operator, we present a generalized Abel integral equation and compute its solution. Also, we define the nonlinear form of a weakly singular Volterra-type integral equation and investigate its solution. These results might be useful in the investigation of the uniqueness of mathematical models and applied problems. 
653 |a Calculus 
653 |a Fractional calculus 
653 |a Inequalities 
653 |a Operators (mathematics) 
653 |a Integrals 
653 |a Books 
653 |a Integral equations 
700 1 |a Liu, Zhi Guo  |u East China Normal University, School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, Shanghai, People’s Republic of China (GRID:grid.22069.3f) (ISNI:0000 0004 0369 6365) 
700 1 |a Samraiz, Muhammad  |u University of Sargodha, Muhammad Samraiz-Department of Mathematics, Sargodha, Pakistan (GRID:grid.412782.a) (ISNI:0000 0004 0609 4693) 
700 1 |a Mehmood, Ahsan  |u East China Normal University, School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, Shanghai, People’s Republic of China (GRID:grid.22069.3f) (ISNI:0000 0004 0369 6365) 
773 0 |t Journal of Inequalities and Applications  |g vol. 2025, no. 1 (Dec 2025), p. 92 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3236788301/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3236788301/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3236788301/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch