A deep learning framework for gender sensitive speech emotion recognition based on MFCC feature selection and SHAP analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 28569-28588
Autor principal: Hu, Qingqing
Otros Autores: Peng, Yiran, Zheng, Zhong
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3236805064
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-14016-w  |2 doi 
035 |a 3236805064 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Hu, Qingqing  |u Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, 999078, Taipa, Macau, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
245 1 |a A deep learning framework for gender sensitive speech emotion recognition based on MFCC feature selection and SHAP analysis 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Speech is one of the most efficient methods of communication among humans, inspiring advancements in machine speech processing under Natural Language Processing (NLP). This field aims to enable computers to analyze, comprehend, and generate human language naturally. Speech processing, as a subset of artificial intelligence, is rapidly expanding due to its applications in emotion recognition, human-computer interaction, and sentiment analysis. This study introduces a novel algorithm for emotion recognition from speech using deep learning techniques. The proposed model achieves up to a 15% improvement compared to state-of-the-art deep learning methods in speech emotion recognition. It employs advanced supervised learning algorithms and deep neural network architectures, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units. These models are trained on labeled datasets to accurately classify emotions such as happiness, sadness, anger, fear, surprise, and neutrality. The research highlights the system’s real-time application potential, such as analyzing audience emotional responses during live television broadcasts. By leveraging advancements in deep learning, the model achieves high accuracy in understanding and predicting emotional states, offering valuable insights into user behavior. This approach contributes to diverse domains, including media analysis, customer feedback systems, and human-machine interaction, showcasing the transformative potential of combining speech processing with neural networks. 
653 |a Physiology 
653 |a Language 
653 |a Accuracy 
653 |a Happiness 
653 |a Artificial intelligence 
653 |a Gender 
653 |a Feature selection 
653 |a Speech 
653 |a Machine translation 
653 |a Long short-term memory 
653 |a Emotions 
653 |a Deep learning 
653 |a Voice recognition 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Classification 
653 |a Algorithms 
653 |a Natural language processing 
653 |a Information processing 
653 |a Computers 
653 |a Females 
653 |a Males 
653 |a Economic 
700 1 |a Peng, Yiran  |u Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, 999078, Taipa, Macau, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
700 1 |a Zheng, Zhong  |u Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, 999078, Taipa, Macau, China (ROR: https://ror.org/03jqs2n27) (GRID: grid.259384.1) (ISNI: 0000 0000 8945 4455) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 28569-28588 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3236805064/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3236805064/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3236805064/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch