Mixed-dimensional fluid–structure interaction simulations reveal key mechanisms of cerebrospinal fluid dynamics in the spinal canal

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Fluids and Barriers of the CNS vol. 22 (2025), p. 1-21
Hoofdauteur: Deshik Reddy Putluru
Andere auteurs: Adrian Buganza Tepole, Gomez, Hector
Gepubliceerd in:
Springer Nature B.V.
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3237011887
003 UK-CbPIL
022 |a 2045-8118 
022 |a 1743-8454 
024 7 |a 10.1186/s12987-025-00691-4  |2 doi 
035 |a 3237011887 
045 2 |b d20250101  |b d20251231 
084 |a 113114  |2 nlm 
100 1 |a Deshik Reddy Putluru 
245 1 |a Mixed-dimensional fluid–structure interaction simulations reveal key mechanisms of cerebrospinal fluid dynamics in the spinal canal 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Cerebrospinal flow dynamics (CSF) plays a critical role in structural disorders of the central nervous system (CNS) and in the design of effective procedures for intrathecal drug delivery. Medical imaging techniques have only partially characterized CSF dynamics. Computational models have the potential to offer a high-resolution description of CSF flow and advance our mechanistic understanding. However, anatomically-accurate computational models of CSF dynamics in the spinal canal have largely ignored the compliance of the spinal tissues, which is critical to understand the pulse wave velocity and the craniocaudal decay of CSF pulsations. Here, we propose a mixed-dimensional fluid-structure interaction method that enables high-fidelity simulations of CSF dynamics on anatomically-accurate models of the spinal canal, considering the tissue compliance effects emerging from the dura mater and epidural fat. Our mixed-dimensional approach bypasses a critical computational bottleneck that emerges from the multiscale geometry of spinal tissues. Our results show that accurate modeling of tissue compliance is critical to capture key elements of CSF dynamics. This work opens new possibilities to control and optimize intrathecal drug delivery and to understand structural abnormalities of the CNS. 
653 |a Simulation 
653 |a Cerebrospinal fluid 
653 |a Computer applications 
653 |a Drug delivery 
653 |a Dura mater 
653 |a Compliance 
653 |a Central nervous system 
653 |a Spinal cord 
653 |a Drug development 
653 |a Geometry 
653 |a Mathematical models 
653 |a Epidural 
700 1 |a Adrian Buganza Tepole 
700 1 |a Gomez, Hector 
773 0 |t Fluids and Barriers of the CNS  |g vol. 22 (2025), p. 1-21 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3237011887/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3237011887/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3237011887/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch