A review of acupoint localization based on deep learning

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Chinese Medicine vol. 20 (2025), p. 1-30
المؤلف الرئيسي: Li, Jiahao
مؤلفون آخرون: Zhennan Fei, Xie, Yingjiang, Deng, Da, Xingcheng Ming, Niu, Fu
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:The development of deep learning has brought unprecedented opportunities for automatic acupoint localization, surmounting many limitations of traditional methods and machine learning, and significantly propelling the modernization of Traditional Chinese Medicine (TCM). We comprehensively review and analyze relevant research in this field in recent years, and examine the principles, classifications, commonly used datasets, evaluation metrics and application fields of acupoint localization algorithms based on deep learning. We categorize them by body part, algorithm architecture, localization strategy, and image modality, and summarize their characteristics, pros and cons, and suitable application scenarios. Then we sieve out representative datasets of high value and wide application, and detail some key evaluation metrics for better assessment. Finally, we sum up the application status of current automatic acupoint localization technology in various fields, hoping to offer practical reference and guidance for future research and practice.
تدمد:1749-8546
DOI:10.1186/s13020-025-01173-3
المصدر:Health & Medical Collection